This study was conducted to investigate the growth characteristics and yield of whole green rice grains during the ripening period. These were investigated using Hopumbyeo and Unkwangbyeo at two transplanting times and with two kinds of nitrogen fertilization. The transplanting times were May 30 and June 20, respectively, using 30-day seedling culture and transplanting conducted with 3 - 4 plants per hill in planting space of $15cm{\times}30cm$. During nitrogen fertilization, 9 kg and 18 kg was used, respectively. The harvest of the green whole rice grains was carried out on the 15th, 20th, 25th, 30th, and 40th day after the heading date. The clum length was greater with later planting and with application of more nitrogen. The rice yield was higher with nitrogen fertilization of 18 kg/10 a when transplanted on May 30 for Hupumbyeo, and for Unkwangbyeo, was higher at 9 kg/10 a nitrogen fertilization when transplanted on May 30. The protein content of Hopumbyeo was higher when the nitrogen fertilizer was 18 kg/10 a, and that of Unkwangbyeo was lower than that when transplanting on June 20. The greenness was not related to the nitrogen fertilization level when transplanted on May 20 but for later transplanting, the greenness was higher when the nitrogen application was increased, and the greenness was the greatest about 30 days after the heading date.
Journal of The Korean Society of Grassland and Forage Science
/
v.29
no.4
/
pp.345-354
/
2009
The barley (Hordeum vulgare L.) is now widely grown as a whole crop silage in Korea, but the quality of that silage does not examined from farms. Therefore, this experiment was conducted to evaluate the forage quality of whole crop barley that was participated in Silage Quality Contest in 2008. These data were classified by region, dry matter (DM) yield, with or not additive, planting and harvest date. Difference on the lactic acid content of barley silage was detected in the region, DM yield, additive and harvest date (p<0.05), however, there were partially significant differences in chemical composition. There were significant differences among moisture content in DM yield, pH in additive, and crude ash content in additive and planting date of barley silage. Crude protein content was significant difference in the region, and ether extract content was in region, DM yield and harvest date, however, non-fiber carbohydrate was significant difference in planting date of barley silage. Neutral detergent fiber, acid detergent fiber and relative feed value were significant difference only in the cultivation region of whole crop barley. According to this experiment, differences in the silage quality were observed among whole crop barley silages. Therefore, nutritive value as well as moisture and pH are important in silage quality evaluation of whole crop barley. Especially, lactic acid is an important factor for the evaluation of whole crop barley silage.
In order to develop a cropping system that can produce garlic in the period of short supply from March to April, effects of low temperature treatment of seed bulbs and planting dates, starting date of low temperature treatment, days of low temperature treatment on plant growth, maturity and yield were studied in Southern strain, 'Namhae' and in Northern strain, 'Euiseong' of garlic (Allium sativum). The results obtained were as follows. In Sorthern strain, sprouting was significantly enhanced by low temperature treatment only in Sep. 14, and Sep. 29 plantings. Days to sprout were least in 30 days of low temperature treatment of Sep. 14 planting and in 45 days treatment of Sep. 29 planting. When considering on the beginning date of low temperature treatment, a marked difference was observed between treatments started before July 31 and after Aug. 15. Sprouting was most enhanced in 45 days low temperature treatment of Aug. 15 and Aug. 30 plantings. In Northern strain, sprouting was en hanced by low temperature treatment in planting from Sep. 29 to Nov. 13 and low temperature treatment for 60 days was most effective. Effect of low temperature treatment on early plant growth was observed in Sep. 14 and Sep. 29 plantings, but the effect on plant growth at intermediate stage or thereafter was observed in up to Oct. 29 plantings. Optimun days for low temperature treatment on growth enhancement was 45 and 60 days in Southern strain and 60 days in Northern strain in each planting dates. In Southern strain, the longer the low temperature treatment and the later the planting date the less the number of leaves developed. In Northern strain, normal leaves were not developed in plantings from Sep. 14 to Nov. 13. In Southern strain, clove differentiation and bulbing were earlist in 45 and 60 days treatment of Sep. 14, Sep. 29, and Oct. 14 planting initiated on July 31 and Aug. 15. In Northern strain, clove differentiation and bulbing were earlist in 60 days treatment of Oct. 14 planting initiated on Aug. 15 and Aug. 30. In treatment initiated later than above, longer the low temperature treatment the earlier the clove differentiation and bulbing in both Southern and Northern strains. The earlier the initiation date and the longer of low temperature treatment, the earlier bolting in southern strain. In Northern strain, bolting was most enhanced in 45 and 60 days of low temperature treatment initiated on Aug. 15 and Aug. 30. The longer the low temperature treatment in plantings thereafter, the earlier the bolting. The earlier the planting date garlic bulbs. Harvest date was earliest in 45 and 60 days low temperature treatment started from July 31 to Aug. 30 in Southern strain, and it was in 60 and 90 days low temperature treatment initiated from July 31 to Aug. 30 in Northern strain. Bulb weight was heaviest in 45 days low temperature treatment of Oct. 14 planting and next was in 45 days treatment of Sep. 29 planting in Southern strain. In Northern strain, bulb weight was heaviest in 60 days treatment of Oct. 14 planting and next was in 45 days treatment of Oct. 14 planting. When considered in the aspect of the beginning date of low temperature treatment, bulb weight was heaviest in 45 days treatment started on Aug. 30 in Southern strain and in 60 days treatment started on Aug. 15 in Northern strain. A high negative correlation between days to harvest and plant height on January 12, and a high positive correlation between days to harvest and days clove differentiation were observed. This indicates that enhanced plant growth and clove differentiation induced by low temperature treatment advanced the harvest date. A high negative correlation between bulb weight and days to clove differentiation, days to harvest suggests that the enhanced clove differentiation result and in heavier bulb weight. From the above results, it suggested that early crop of garlic can be harvested by planting at the period of Sep. 29 to Oct. 14 after 45 days of low temperature treatment of seed bulbs of Southern strain. Then harvest date can be shortened by 30 days compared to control and garlic can be harvested in early April.
Kim, J.G.;Seo, S.;Chung, E.S.;Lim, Y.C.;Lee, J.K.;Seo, J.H.;Park, G.J.
Journal of The Korean Society of Grassland and Forage Science
/
v.22
no.4
/
pp.241-246
/
2002
Rye-hairy vetch mixture would be recommended fur produce higher yield and conserving soil environment. This experiment was conducted to investigate the effect of planting and harvest dates on quality and productivity of rye-hairy vetch mixture. Plant height of rye and hairy vetch was increased with delayed harvest dates, but it found that there was on significant difference among seeding dates. The dry matter(DM) content was increased with delayed harvest dates, and it showed 30% DM in mid-May. Crude protein(CP) content was decreased sharply from 17~18% in heading stage to 9~10% in flowering stage. The content of ADF(Acid detergent fiber) and NDF(Neutral detergent fiber) were increased with delayed harvest date, but IVDMD(In vitro dry matter digestibility) and TDN(Total digestible nutrient) were decreased. The change of dry matter yield was affected significantly by harvest date but was not by seeding time. The results of this experiments indicated that harvest in late-April would be recommended to produce the highest yield and quality if it is considered to cultivate com fur silage. Harvest in mid-May would be recommendable with the cultivation of early maturity silage corn or sorghum $\times$ sudangrass hybrids.
Effect of shifting planting-time and different nitrogen on the yield and characteristics of plant growth in safflower, Chrthamus Tinctorius L. This study was carried out to investigate the optimum sowing-date and the ecological variations due to differerent amount of nitrogen for safflower on the Experiment Farm of Sang Ji college from March 17 to may 16, 1980, sowing seeds with an interval of 10 days and the amount of nitrogen were applied in 5 levels (Non, half-standard, standard, one and half-ordinary amount-No and twice amount). The triple super phosphate and pottassium chloride were applied only in standard amount. The results obtained are summarized as follows; 1. As sowing-date was delayed, the germination-ratio decreased, germinating speed increased, and the time required to attain the most vigorous germinating stage and days required for germination shortened. 2. Plant height, number of branch and stem diameter showed a decrease as sowing-date was delayed. And at the same time, plant height and number of branch showed a tendency to increase as amount of nitrogen was increased. 3. As sowing-date was delayed, the number of pods and the weight of 1000-grains were decreased. Moreover, the earlier sowing-date was, the more it increased. And as amount of nitrogen was increased, number of pods and yield also were strikingly increased. 4. The fresh-weight of flower with orange and orange-red colour, as influenced by the different sowing-date, was found out to be largest at the begining of April. But increasing amount of nitrogen did not show influence upon the promotion of flowering. 5. Judging from the results reported above, the optimum sowing-date of safflower seemed to be the begining of April; also the culture of safflower seemed to be the effects of much amount of nitrogen.
Kim, J.D.;Kim, D.A.;Lee, J.K.;Kim, J.G.;Kang, W.S.
Journal of The Korean Society of Grassland and Forage Science
/
v.19
no.3
/
pp.221-232
/
1999
Dry matter yield and ear percent are commonly considered the most important factors for evaluating silage corn(Zea mays L.) hybrids for silage production. But quality of stover as well as forage production in important in identification of hybrids. The objective of this study was to evaluate nutritional value of stover, ear and whole plant from eight corn hybrids for silage at two dates of planting. In content of fiber components(ADF, NDF, ADL, hemicellulose and cellulose) from stover, ear and whole plant samples, optimum planting corn was lower than late planting one(P<0.01). Differences(P<0.01) in the content of fiber components in stover and whole plant were observed among the corn hybrids. Differences between different planting dates in TDN and $NE_1$ were detected in the stover and whole plant samples(P<0.05). Differences among the corn hybrids in TDN and $NE_1$ were also observed in stover, ear and whole plant samples. TDN and $NE_1$ of 'G4624', 'P3352' and 'P3394' for whole plant were higher than those of the other corn hybrids. ln vitro dry matter digestibility(IVDMD) at optimum planting date was higher than that of late(P<0.05), and there also were significant differences among the corn hybrids. Correlation coefficients for whole plant IVDMD with NDF, ADF, hemicellulose, and cellulose were $-0.82^{**}$, $-0.71^{**}$, $-0.63^{**}$, and $-0.69^{**}$, respectively. Results of this study indicate that optimum planting of corn resulted in increased quality of silage corn. Differences among corn hybrid, particularly, in nutritive value of stover and whole plant were also observed. Therefore, the nutritional value of stover and whole plant may be important in assessing the corn hybrids for silage.
Journal of The Korean Society of Grassland and Forage Science
/
v.25
no.2
/
pp.125-130
/
2005
This study was conducted from March 16 to July 6 in 2004 at Jeju Island to investigate the influences of sowing dates(on March 16, March 26, April 5, April 15 and April 25) on creeping bentgrass vegetation. The result obtained were summarized as follows; Plant height was 22.7 cm at March 16 planting. It was longest but after that planting, plant height gradually shorted. Then it was shortest at April 25 planting(16.6 cm). Root length and Minolta SPAD-502 chlorophyll reading value were directly proportional plant height response. Leave and root weight were greatest at March 16 planting. It were 1,373 kg /10a and 2,374 kg /10a, respectively. These weight decreased gradually as planting was delayed from March 16 to April 25. Degree land cover and density of creeping bentgrass were $98.0\%$ and $99.3\%$, respectively, at March 16. After that planting they were decreased ($97.5\%$, $98.7\%$). But degree land cover and density of weed tended to increased gradually as the planting was delayed. The number of weed species were increased from March 16 to April 25. It showed increase that Poa annua, Stellaria media and Chenopodium album var. centrorubrum(at March 16 planting), Poa annua, Digitaria adscendens and Chenopodium album var. centrorubrum(at March 26 planting), Digitaria adscendens, Chenepodium album var. centrorubrum and Stellaria media(at April 5 planting), Digitaria adscendens, Stellaria media and Chenopodium album var. centrorubrum(at April 15 planting), Digitaria adscendens, Polygonum hydropiper, Chenopodium album var. centrorubrum(at April 25 planting). Based on the these findings, optimum sowing date for growth of creeping bentgrass seems to be about early seeding in atmospheric phenomena and volcanic ash soils of Jeju island.
Double cropping is important for increase of farm income and rate of arable land utilization. This study was carried out to obtain information for optimum plant density of the second crop in a double cropping system. A waxy corn hybrid, Chalok #2, was sown on July 10 at the first corn cropping site. Growth characteristics and yield response of fresh waxy corn were examined under different planting densities, which were 55.5, 66.6, 83.3, and 111.1 thousands plants ${ha}^{-1}$. Plant height was higher under high planting density than low planting density and 154cm at the 55.5 thousand plants ${ha}^{-1}$, and 168cm at the 111.1 thousand plant ${ha}^{-1}$. It showed same trends in ear height and gravity center height. But planting density did not affect root lodging and silking date. At the silking stage, stalk and leaf dry matter weight and leaf area index (LAI) were increased significantly with increasing planting density, Filled ear lengtg was shortened significantly under the hi임est planting density (111.1 thousand plants ${ha}^{-1}$), while ear length and ear diameter were no differences among planting densities. The number of marketable ears increased with increasing planting density, but husked fresh ear weight was the highest at 83.3 thousand plants ${ha}^{-1}$ with 11.2MT ${ha}^{-1}$and optimum planting density was estimated as about 80 thousand plants ${ha}^{-1}$.
This experiment was carried out to investigate the optimum planting density in low fertilizing cultivation of machine transplanting in rice field of Honam Agricultural Research Institute, NICS for $2004{\sim}2005$. Sobibyeo which belongs to medium maturing variety and Nampyeongbyeo which belongs to medium-late maturing variety were transplanted on May 30. In this experiment, there was no significant difference in heading date between planting density and nitrogen fertilization rate, and heading dates were August 8 in Sobibyeo, and August 14 in Nampyeongbyeo respectively. In relation to lodging character, lodging Index was high where the nitrogen fertilization rate and planting density were high. As planting density increases, panicle number per $m^{2}$ increased irrespective of nitrogen fertilization rate. When nitrogen was 6 kg/10a, rice yield of Sobibyeo was more where planting density was 90 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 80 hill per $3.3m^{2}$. When nitrogen was 9 kg/10a, rice yield of Sobibyeo was more where planting density was 100 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 110 hill per $3.3m^{2}$. Head rice rate of brown rice was higher when planting density increased, and was higher at 6 kg/10a nitrogen rate than 9 kg/10a nitrogen rate in all varieties.
Journal of The Korean Society of Grassland and Forage Science
/
v.10
no.2
/
pp.115-120
/
1990
A series of experiments were carried out for two successive years to investigate the productivity of forage turnip in mid-northern area of Korea. Fresh matter and dry matter yields of 6 foreign cultivars (Purple Top Strap Leaved, Purple Top White Globed, Seven Top, Shogoin, White Egg and Amber Globe) seeded either in early spring or in autumn after harvesting forage corn were evaluated with different seeding date and harvesting date as well as with different level of fertilization. The results obtained are summarized as follows: 1. The earlier the seeding date in spring (Mar. 29, Apr. 12, Apr. 16) was, the higher was the yield of fresh matter and dry matter as the plant growth ceased after mid June, when the temperature began to rise. 2. In spite of its high DM yield, the Japanese cultivar, Shogoin, showed poor forage quality for summer feeding due to its earlier bolting in harvesting season. 3. Of the 6 cultivars Purple Top White Globed showed highest DM yield (800 kg/ 10a) in mid area including SEOUL irrespective of planting season. 4. Although the turnips showed mostly positive yield responses to fertization, the differences were not great especially above the level of$N-P_2O_5-K_2O$: 5-3-4 kg/lOa. 5. IN TAEGWALLYONG, a northern area of Korea, the average fresh matter yield of the six cultivars tested amounted to 3,500 kg/lOa when drilled on June 30 and harvested on Aug. 30, although bulb formation during the summer was relatively poor. 6. Concluded, forage turnip is regarded to be a suitable catch-crop which has the potential to maintain and increase the total forage production in mid-northern area of Korea. The intercropping is recommendable especially for autumn planting well past the time forage corn has been harvested.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.