• Title/Summary/Keyword: Planting Conditions

Search Result 308, Processing Time 0.025 seconds

Studies on Growth Characteristics and Propagation Method of Introduced Hop (Humulus lupulus L.) Cultivars (홉(Humulus lupulus L.) 도입 품종의 생육특성 및 영양번식 연구)

  • Tae Hyun Ha;Jae Il Lyu;Jun-Hyung Lee;Jaihyunk Ryu;Sang Hoon Park;Si-Yong Kang
    • Korean Journal of Plant Resources
    • /
    • v.36 no.2
    • /
    • pp.181-190
    • /
    • 2023
  • Domestic hop (Humulus lupulus L.) production has been suspended since the early 1990s due to foreign imports, but interest in local production is rising due to the recent craft beer boom in Korea. This study was conducted focusing on the development of growth characteristics and propagation technology for 6 introduced hop cultivars as a basic study for domestic hop production and breeding program. In the hop growth survey conducted in 2021 and 2022, the 5-year-old plants after planting generally showed a tendency to increase the height of strobile setting, strobile size, number and weight of strobile per hill compared to the 4-year-old plants. As a result of the experiment with hop vine cuttings, the average rooting rate of all cultivars was as high as 88% even in only water treatment that were not added with Atonik (Atonik, Arysta, Japan), a rooting agent. There were differences between cultivars in rooting length and rooting rate according to the Atonik treatment method. When checking the survival rate of the rooted cuttings seedlings after transplanting into the soil, it was confirmed that the survival rate of the cuttings in the tissue culture room was significantly lower than that of the cuttings in the greenhouse. However, in transplanting step, cutting plants from culture room condition was strongly inhibited plant growth because of changing environment conditions. As a results of tissue culture, the thidiazuron (TDZ) 1 ㎎/L treatment in the media generated 6 to 9 shoots/explant, while the 6-benzylaminopurine (BAP) 1 ㎎/L treatment generated only 1 to 2 shoots/explant. Therefore, it is more effective to culture by adding TDZ rather than BAP. These results indicated that the development of technology to manage stably after transplanting of cutting or micropropagating plants into potting soil is important for mass propagation of hops.

Monitoring the Reoccurrence of Fire Blight and the Eradication Efficiency of Erwinia amylovora in Burial Sites of Infected Host Plants Using Sentinel Plants (미끼식물을 이용한 화상병 감염 기주 매몰지 내 화상병균 제거 효율 검증 및 병 재발 모니터링)

  • In Woong, Park;Yu-Rim, Song;Nguyen Trung, Vu;Eom-Ji, Oh;In Sun, Hwang;Hyeonheui, Ham;Seong Hwan, Kim;Duck Hwan, Park;Chang-Sik, Oh
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.221-230
    • /
    • 2022
  • The fire blight caused by Erwinia amylovora (Ea) was first reported in 2015 in Korea, and the disease has rapidly spread to 22 regions until 2021. In Korea, all host plants in the apple and pear orchards where fire blight occurred should be eliminated and buried by the Plant Protection Act. To prevent the spread of the disease, all burial sites were prohibited from planting the new host plants for the next three years. To confirm the eradication efficiency of Ea and the reoccurrence of fire blight, the surveillance facilities were established on three burial sites from 2019 to 2020 in Anseong-si, Gyeonggi-do, and Chungju-si, Chungcheongbuk-do. As host plants, five apple trees of fire blight-susceptible cultivar 'Fuji', were planted in each facility. All facilities were enclosed with fences and nets and equipped with two CCTVs, motion sensors, and several other sensors for recording weather conditions to monitor the environment of the sentinel plants in real-time. The sentinel plants were checked for the reoccurrence of fire blight routinely. Suspicious plant parts were collected and analyzed for Ea detection by loop-mediated isothermal amplification polymerase chain reaction and conventional polymerase chain reaction. Until November 2022, Ea has not been detected in all sentinel plants. These results might support that the burial control of infected plants in soil works efficiently to remove Ea and support the possibility to shorten the prohibition period of host plant establishment in the burial sites.

Forage Productivity and Quality of Triticale and Rye (Triticale과 호밀의 청예사료 생산성)

  • Lee, Suk-Soon;Park, Chan-Ho;Chang, Young-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.388-397
    • /
    • 1985
  • Forage productivity and sequential changes in forage quality of four rye and two triticale varieties were studied. All the observed characteristics were similar among rye or triticale varieties, but they were different between rye and triticale varieties. Early growth of rye was better compared to triticale varieties, but at heading stage yield in dry weight, digestible dry matter and percent dry matter of triticale were higher compared to rye varieties. Heading stage of rye was earlier than that of triticale by 11 - 14 days. Triticale had longer and broader leaf blades and a higher leaf blade/total dry weight ratio compared to rye. Protein content decreased as plant growth advanced and it was higher in rye before heading, but it was similar after heading compared to triticale. Cellulose and lignin contents of rye increased through 20 days after heading. However, in triticale cellulose increased until heading stage and it levelled off, but lignin content increased rapidly after heading. Among the crude fibers, only acid detergent fibers(ADF) was negatively correlated with in vitro dry matter digestibility(IVDMD) in both rye and triticale. IVDMD of rye decreased rapidly after heading, but it was maintained as high as heading stage up to 15 days after heading in triticale. Protein content and IVDMD in leaf blades were higher than those of culm + leaf sheath, hemicellulose was similar, and cellulose, lignin, and ADF in leaf blades were lower compared to culm + leaf sheath. In the early and middle part of April rye was superior to triticale as a soiling crop because of a better plant growth of rye under the low temperature conditions, but in the later part of April and early part of May triticale was superior to rye because of a rapid decreased in IVDMD of rye after heading and a late maturing characteristics of triticale. Planting both rye and triticale could prolong the utilization period of the soiling crops and increase in yield with better quality compared to a single crop of rye or triticale.

  • PDF

Evaluation of K-Cabbage Model for Yield Prediction of Chinese Cabbage in Highland Areas (고랭지 배추 생산 예측을 위한 K-배추 모델 평가)

  • Seong Eun Lee;Hyun Hee Han;Kyung Hwan Moon;Dae Hyun Kim;Byung-Hyuk Kim;Sang Gyu Lee;Hee Ju Lee;Suhyun Ryu;Hyerim Lee;Joon Yong Shim;Yong Soon Shin;Mun Il Ahn;Hee Ae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.398-403
    • /
    • 2023
  • Process-based K-cabbage model is based on physiological processes such as photosynthesis and phenology, making it possible to predict crop growth under different climate conditions that have never been experienced before. Current first-stage process-based models can be used to assess climate impact through yield prediction based on climate change scenarios, but no comparison has been performed between big data obtained from the main production area and model prediction so far. The aim of this study was to find out the direction of model improvement when using the current model for yield prediction. For this purpose, model performance evaluation was conducted based on data collected from farmers growing 'Chungwang' cabbage in Taebaek and Samcheok, the main producing areas of Chinese cabbage in highland region. The farms surveyed in this study had different cultivation methods in terms of planting date and soil water and nutrient management. The results showed that the potential biomass estimated using the K-cabbage model exceeded the observed values in all cases. Although predictions and observations at the time of harvest did not show a complete positive correlation due to limitations caused by the use of fresh weight in the model evaluation process (R2=0.74, RMSE=866.4), when fitting the model based on the values 2 weeks before harvest, the growth suitability index was different for each farm. These results are suggested to be due to differences in soil properties and management practices between farms. Therefore, to predict attainable yields taking into account differences in soil and management practices between farms, it is necessary to integrate dynamic soil nutrient and moisture modules into crop models, rather than using arbitrary growth suitability indices in current K-cabbage model.

Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions (환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구)

  • Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.1-44
    • /
    • 1974
  • These studies were made at Suwon in 1972 and at Suwon, Iri, and Kwangju in 1973 to investigate grain filling process and variation of grain quality of NB 68513 and Caprock as hard red winter wheat, Suke #169 as soft red winter wheat variety and Yungkwang as semi-hard winter variety, grown under-three different fertilizer levels and seeding dates. Other experiments were conducted to find the effects of temperature, humidity and light intensity on the grain filling process and grain quality of Yungkwang and NB 68513 wheat varieties. These, experiments were conducted at Suwon in 1973 and 1974. 1. Grain filling process of wheat cultivars: 1) The frequency distribution of a grain weight shows that wider distribution of grain weight was associated with large grain groups rather than small grain group. In the large grain groups, the frequency was mostly concentrated near mean value, while the frequency was dispersed over the values in the small grain group. 2) The grain weight was more affected by the grain thickness and width than by grain length. 3) The grain weight during the ripening period was rapidly increased from 14 days after flowering to 35 days in Yungkwang and from 14 days after flowering to 28 days in NB 68513. The large grain group, Yungkwang was rather slowly increased and took a longer period in increase of endosperm ratio of grain than the small grain group, NB 68513. 4) In general, the 1, 000 grain weight was reduced under high temperature, low humidity, while it was increased under low temperature and high humidity condition, and under high temperature and humidity condition. The effect of shading on grain weight was greater in high temperature than in low temperature condition and no definite tendency was found in high humidity condition. 5) The effects of temperature, humidity and shading on 1, 000 grain weight were greater in large-grain group, Yungkwang than in small grain group, NB 68513. Highly significant positive correlation was found between 1, 000 grain weight and days to ripening. 6) The 1, 000 grain weight and test weight were increased more or less as the fertilizer levels applied were increased. However, the rate of increasing 1, 000 grain weight was low when fertilizer levels were increased from standard to double. The 1, 000 grain weight was high when planted early. Such tendency was greater in Suwon than in Kwangju or Iri area. 2. Milling quality: 7) The milling rate in a same group of varieties was higher under the condition of low temperature, high humidity and early maturing culture which were responsible for increasing 1, 000 grain weight. No definite relations were found along with locations. 8) In the varieties tested, the higher milling rate was found in large grain variety, Yungkwang, and the lowest milling rate was obtained from Suke # 169, the small grain variety. But the small grained hard wheat variety such as Caprock and NB 68513 showed higher milling rate compared with the soft wheat variety, Suke # 169. 9) There were no great differences of ash content due to location, fertilizer level and seeding date while remarkable differences due to variety were found. The ash content was high in the hard wheat varieties such as NB 68513, Caprock and low in soft wheat varieties such as Yungkwang and Suke # 169. 3. Protein content: 10) The protein content was increased under the condition of high temperature, low humidity and shading, which were responsible for reduction of 1, 000 grain weight. The varietal differences of protein content due to high temperature, low humidity and shading conditions were greater in Yungkwang than in NB 68513. 11) The high content of protein in grain within one to two weeks after flowering might be due to the high ratio of pericarp and embryo to endosperm. As grains ripen, the effects of embryo and pericarp on protein content were decreased, reducing protein content. However, the protein content was getting increased from three or four weeks after flowering, and maximized at seven weeks after flowering. The protein content of grain at three to four weeks after flowering increased as the increase of 1, 000 grain weight. But the protein content of matured grain appeared to be affected by daily temperature on calender rather than by duration of ripening period. 12) Highly significant positive correlation value was found between the grain protein content and flour protein content. 13) The protein content was increased under the high level of fertilizers and late seeding. The local differences of protein content were greater in Suwon than in Kwangju and Iri. 14) Protein content in the varieties tested were high in Yungkwang, NB 68513 and Caprock, and low in Suke # 169. However, variation in protein content due to the cultural methods was low in Suke # 169. 15) Protein yield per unit area was increased in accordance with increase of fertilizer levels and early maturing culture. However, nitrogen fertilizer was utilized rather effectively in early maturing culture and Yungkwang was the highest in protein yield per unit area. 4. Physio-chemical properties of wheat flour: 16) Sedimentation value was higher under the conditions of high temperature, low humidity and high levels of fertilizers than under the conditions of low temperature, high moisture and low levels of fertilizers. Such differences of sedimentation values were more apparent in NB 68513 and Caprock than Yungkwang and Suke # 169. The local difference of sedimentation value was greater in Suwon than in Kwangju and Iri. Even though the sedimentation value was highly correlated with protein content of grain, the high humidity was considered one of the factors affecting sedimentation value. 17) Changes of Pelshenke values due to the differences of cultural practices and locations were generally coincident with sedimentation values. 18) The mixing time required for mixogram was four to six minutes in NB 68513, five to seven minutes in Cap rock. The great variation of mixing time for Yungkwang and Suke # 169 due to location and planting conditions was found. The mixing height and area were high in hard wheat than in soft wheat. Variation of protein content due to cultural methods were inconsistent. However, the pattern of mixogram were very much same regardless the treatments applied. With this regard, it could be concluded that the mixogram is a kind of method expressing the specific character of the variety. 19) Even though the milling property of NB 68513 and Caprock was deteriorated under either high temperature and low humidity of high fertilizer levels and late seeding conditions, baking quality was better due to improved physio-chemical properties of flour. In contrast, early maturing culture deteriorated physio-chemical properties, milling property of grain and grain protein yield per unit area was increased. However, it might be concluded that the hard wheat production of NB 68513 and Caprock for baking purpose could be done better in Suwon than in Iri or Kwangju area. 5. Interrelationships between the physio-chemical characters of wheat flour: 20) Physio-chemical properties of flour didn't have direct relationship with milling rate and ash content. Low grain weight produced high protein content and better physio-chemical flour properties. 21) In hard wheat varieties like NB 68513 and Caprock, protein content was significantly correlated with sedimentation value, Pelshenke value and mixing height. However, gluten strength and baking quality were improved by the increased protein content. In Yungkwang and Suk # 169, protein content was correlated with sedimentation value, but no correlations were found with Pelshenke value and mixing height. Consequently, increase of protein content didn't improve the gluten strength in soft wheat. 22) The highly significant relationships between protein content and gluten strength and sedimentation . value, and between Pelshenke value, mixogram and gluten strength indicated that the determination of mixogram and Pelshenke value are useful for de terming soft and hard type of varieties. Determination of sedimentation value is considered useful method for quality evaluation of wheat grain under different cultural practices.

  • PDF

A Basic Study on the Euryale ferox Salisbury for Introduction in Garden Pond - Focusing on the Flora and Vegetation - (정원내 가시연꽃(Euryale ferox Salisbury) 도입을 위한 기초연구 - 식물상과 식생을 중심으로 -)

  • Lee, Suk-Woo;Rho, Jae-Hyun;Oh, Hyun-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.83-96
    • /
    • 2016
  • Through the research and analysis on the vegetation environment, flora of habitats through documentary and field studies over 14 habitats of Euryale ferox Salisbury within Jeollabukdo, with the objective of acquiring the basic data for forming an environment based on plantation of reservoirs that are composed with Euryale ferox, the following results were obtained. 1. The entire flora of the 14 habitats appeared to be 79 families, 211 genus, 298 species, two subspecies, 30 varieties and six forma, thus, a total of 336 taxa was confirmed. Among these, emergent water plants appeared to compose 17 taxa, floating-leaved plants to compose seven taxa including Euryale ferox floating plants to compose five taxa and submerged water plants to compose two taxa. As a result of analyzing the similarity only over the water plants. The lowest similarity rate appeared between Gamdong Reservoir and Aedang Reservoir, as the similarity rate between the two regions appeared to be 0% as a result of the analysis. Floating-leaved plants, lotuses and caltrops, appeared to be equally inhabiting in Hanseongji at Jeongeup and Seoknam Reservoir at Gochang, which showed the highest similarity rate, in addition to Euryale ferox. 2. When examining the appearance frequency of aquatic plants per growth type, Actinostemma lobatum and Phragmites communis, in addition to Euryale ferox each appeared 11 times, showing a high frequency of 78.6% and Trapa japonica, which is a floating-leaved water plant, appeared ten times(71.4%) and Zizania latifolia appeared eight times(57.1%). In addition, the appearance rate appeared to be high in the order of Persicaria thunbergii, Leersia sayanuka, Ceratophyllum demersum, Echinochloa crusgalli var. oryzicola, Scirpus maritimus, and Nelumbo nucifera. 3. The rare plants discovered in the Euryale ferox habitats pursuant to the IUCN evaluation standards was confirmed to be composed of five taxa, with three taxa including the least concerned species(LC), Melothria japonica at Yanggok Reservoir, Hydrocharis dubia at Myeongdeokji and Ottelia alismoides at Daewi Reservoir, in addition to vulnerable species(VU), Utricularia vulgaris at Sangpyeong Reservoir, along with Euryale ferox. 4. Most of the group or community types of the natural habitats of Euryale ferox appeared to be the Euryale ferix community' and the Daewi Reservoir of Gunsan was defined as caltrop + Euryale ferox + Nymphoides indica community. The green coverage ratio of Euryale ferox per natural habitats showed a considerably huge deviation from 0.03 to 36.50 and as the average green coverage ratio was appropriated as 9.8, it can be considered that maintaining the green coverage ratio of Euryale ferox in a 10% level would be advisable when forming a reservoir with Euryale ferox as the key composition species. 5. The vegetation community nearby the natural habitats of Euryale ferox per research subject area appeared to be composed of three Leersia japonica communities, two communities each for Zizania latifolia community and Trapa japonica community and one community each for Nelumbo nucifera community, Nymphoides peltata + Typha orientalis community, Trapa japonica + Nelumbo nucifera community, Hydrocharis dubia community, Leersia japnica + Paspalum distichum var. indutum community and Euryale ferox + Trapa japonica community, showing a slight difference depending on the location conditions of each reservoir. Thus, this result may be suggested as a guideline to apply when allocating the vegetation ratio and the types of floating-leaved plants upon planting plants in reservoirs with Euryale ferox as the main companion species.

Optimization of Cultivational Conditions of Rice(Oryza sativa L.) by a Central Composite Design Applied to an Early Cultivar in Southern Region (중심합성계획법에 의한 남부 조생벼 재배요인의 최적조건 구명)

  • Shon, Gil-Man;Kim, Jeung-Kyo;Choe, Zhin-Ryong;Lee, Yu-Sik;Park, Joong-Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.60-73
    • /
    • 1989
  • Two field experiments were carried out to assess the applicability of a central composite design (CCD) in determining optimum culture condition of an early rice cultivar, Unbongbyeo in southern Korea. A central composite design with two replicates was applied to five levels of five factors such as the number of hills per 3.3m2, the number of seedlings per hill, the levels of nitrogen, the transplanting date and the seedling age (Experiment 1). The levels of planting density were ranged from 30 hills to 150 hills per 3.3m2 ; the number of seedlings per hill from 1 seedling to 9 seedlings per hill; the levels of nitrogen application from 1 kg/l0a to 21 kg/l0a; the transplanting date from June 15 to July 5; the seedling age from 25 days to 45 days. A fractional factorial design was applied to three levels of five factors tested in CCD (Experiment 2). Yield per hill and per unit area were examined and the results obtained from both experiments were compared. The benefits from the central composite design were discussed. Maximum yield of brown rice per unit area was obtained at the combination of the central levels of one of five factors when the other four factors were fixed at central point. Furthermore, brown rice yield per unit area affected by interaction of two factors was maximized at the central point when the remain three factors being fixed at the central level. The responses of five factors to brown rice yield per hill and unit area were found to be a saddle point in both designs. Actual values of the stationary points were 107 hills per 3.3 m2, 4 seedlings per hill, 10 kg nitrogen per l0a, transplanting date of rice on June 26 and 33 days of seedling age in the central composite design. Brown rice yield per unit area at the stationary points were estimated 439 kg/l0a in the central composite design and 442 kg/l0a in the fractional factorial design. Considering the number of experimental treatment combinations, the central composite design was rather convenient in reducing the number of treatment combinations for similar information. It was more convenient for an experimenter to present the results from the central composite design than those from the fractional factorial design. Considering the optimum yields of brown rice per unit area at the stationary points being verified as saddle points in both designs. inter-heterogeneity of each of the factors should be avoided in setting up factors in pursuit of inducing unidirectional response of the factors to yield. Even though both the lower and higher levels in the central composite design being beyond the region of an experimenter's interest. they were considered highly valued in interpretation of the results. Conclusively. the central composite design was found to be more beneficial to optimize culture condition of paddy rice even with several levels of various factors were involved.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF