• Title/Summary/Keyword: Plantar Foot Pressure

Search Result 172, Processing Time 0.022 seconds

The Comparison of Plantar Foot Pressure in Normal Side of Normal People, Affected Side and Less Affected Side of Hemiplegic Patients During Stance Phase (보행 중 입각기 시 정상 성인과 편마비 환자의 환측과 건측의 족저압 분포 비교)

  • Yoon, Hyang-Woon;Lee, Sang-Yeol;Lee, Hyun-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.4 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Objects:The purpose of this study is to investigate the values of foot pressure of the stance phase during a gait cycle in hemiplegic gait. Method:42 patients who had a stroke and 42 healthy adults were evaluated by the RSscan system to analyze the stance phase of hemiplegic gait. The stance phase was evaluated as plantar foor pressure. Results:1) Foot plantar pressure of toe area, affected side and less affected side showed low distribution of the plantar foot pressure which is lower than plantar foot pressure of normal adults(p<0.05). 2) Foot plantar pressure of metatarsal area, showed significantly differences among hemiplesic patient's affected side and less affected side and distribution of plantar foot pressure of normal adults(p<0.05). 3) Foot plantar pressure of heel area, hemiplesic patients' affected side and less affected side showed lower distribution of the plantar foot pressure than plantar foot pressure of normal adults(p<0.05). Conclusion:The results of this study suggest that not only affected side but also less affected side in hemiplegic patients showed significantly differences in distribution of the plantar foot pressure of normal adults.

  • PDF

Comparison of Pathway of COP and Plantar Foot Pressures while Ascending and Descending a Slope (경사로 오르기와 내리기 동안 압력중심 이동경로와 족저압 비교)

  • Han, Jin-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.5
    • /
    • pp.77-82
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the pathway of COP and plantar foot pressure and to determine the correlation between plantar regions during the ascending and descending of a ramp. Methods: Fifteen healthy adults who had no musculoskeletal problems participated in our study. They were asked to walk on a level surface and on an ascending and descending ramp in their bare feet. Pathway of COP and plantar foot pressures were recorded using the Matscan system (Tekscan, Boston, USA). For pressure measurements, the plantar foot surface was divided into seven regions: two toe regions, three forefoot regions, a midfoot region, and a heel region. To determine whether there was a statistically significant difference between pathway of COP and plantar foot pressures during walking, we used repeated measuremes ANOVA. Results: In comparison to results for a level walking, pathway of COP while ascending a ramp had a tendency to be shifted medially in the forefoot and became longer till the big toe. Pathway of COP while descending a ramp also was shifted medially, but ended in the forefoot. Plantar foot pressure of the second and third metatarsal head and the fourth and fifth metatarsal heads was significantly decreased while descending the ramp. Conclusion: These results indicated that plantar foot pressure is changed while ascending and descending a ramp and demonstrated that ramp walking can affect the structure and function of the foot. Therefore, gait environment is associated with significant changes in foot characteristics, which contribute to altered plantar loading patterns during gait.

The Analysis of Dynamic Foot Pressure on Difference of Functional Leg Length Inequality (기능적 하지길이 차이에 따른 동적 족저압의 분석)

  • Gong, Won-Tae;Kim, Joong-Hwi;Kim, Tae-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2009
  • Purpose: This study examined the dynamic peak plantar pressure under the foot areas in those with a functional leg length inequality. Methods: The dynamic peak plantar pressure under the foot areas in an experimental group with a functional leg length inequality (n=20) and a control group (n=20) was assessed a using the Mat-Scan system (Tekscan, USA). The peak plantar pressure under the hallux, 1st, 2nd, 3-4th and 5th metatarsal head (MTH), mid foot, and heel was measured while the subject was walking on the Mat-Scan system. Results: The experimental group had significantly higher peak plantar pressure under all foot areas when the dynamic peak plantar pressure in the short leg and long leg sides was compared. The control group had a significantly higher peak plantar pressure under the 1st, 2nd, 3-4th, and 5th MTH when the dynamic peak plantar pressure in the short leg and long leg sides were compared. The experimental group showed a significantly larger difference in the dynamic peak plantar pressure under the hallux, 1st, 2nd, 3-4th and 5th MTH, mid foot and heel than the control group. Conclusion: A functional leg length inequality leads to an increase in the weight distribution and dynamic peak plantar pressure in the side of the short leg.

  • PDF

Comparative Analysis of Plantar Pressure between Skilled and Unskilled Players during Hockey Penalty Stroke (하키페널티 스트로크 동작 시 숙련자와 미숙련자의 족저압력 분석)

  • Lee, Jae-Youl;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.141-150
    • /
    • 2012
  • This study aims to provide the basic biomechanical data on the average, maximum and distribution of plantar pressure during hockey penalty stroke by comparing five skilled and five unskilled players. Following are the conclusions. First in the case of average and maximum planter pressure during penalty stroke, the skilled players showed higher pressures at the moment of left foot landing in rear plantar of left foot and fore, rear plantar of right foot compared to the unskilled players. Also at the moment of impact, the skilled players showed higher pressures in fore, rear plantar of left foot and fore plantar of right foot compared to the unskilled. The analysis drew the conclusion that the skilled players move their center of body from fore, rear plantar of right foot to fore, rear plantar of left foot at the moment of left foot landing and impact in order to perform a quick and strong shooting. Second in the case of plantar distribution, as the skilled players put over 70% of their weights on left foot, they showed overall higher plantar pressure distributed on the outer fore, mid and rear parts of left foot plantar, in contrast with the unskilled players who showed about 50/50 distribution of weights on their right and left foot. The analysis concluded that such distribution was shown because the skilled players transferred their weights from the right to left foot effectively while the unskilled players could not do so.

Effects of Foot Strengthening Exercises and Functional Insole on Range of Motion and Foot Plantar Pressure in Elderly Women

  • Shin, Jin Hyung;Lee, Joong Sook;Han, Ki Hoon;Bae, Kang Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effect of foot strengthening exercise program and functional insoles on joint angle and plantar pressure in elderly women. Thirteen elderly women who were enrolled in a university senior citizens academy of a metropolitan city in 2017 were divided into two groups: exercise group with functional insole (n=7) and exercise group without functional insole (n=6). Method: Three-dimensional motion analysis and Pedar-X were performed to compute the joint angle and the foot plantar pressure, respectively. Two-way repeated measure ANOVA was conducted to compare dependent variables within and between groups. The significance level was set at ${\alpha}=.05$. Results: The range of motion (ROM) of the ankle, knee, and hip joints in the exercise group with functional insole increased significantly more than the exercise group without functional insole. In both the experimental group and the comparison group, the maximum foot plantar pressure and the mean foot plantar pressure were decreased, but the comparison group without functional insole showed more decrease. Since the experimental group demonstrated greater pressure than the comparison group in the contact area (forefoot, midfoot), it was distributed over a greater area. Conclusion: The results of this study suggest that participation in foot strengthening exercises and using a functional insole has more positive effects than foot strengthening exercises alone on the joint angle and plantar pressure in elderly women. Increased foot plantar pressure led to an increased contact area (forefoot, midfoot) for distribution of the foot plantar pressure, but the effect of reducing the maximum and average plantar pressures was incomplete. However, wearing functional insoles along with exercise, could help in improving the stability of the joints, by increasing the range of motion, and could help the elderly in movement of the muscles more effectively, leading to an improvement in gait function.

Foot Pressure Mat with Visual Notification for Recognizing and Correcting Foot Pressure Imbalance (시각적 알림이 있는 족저압매트 개발을 통한 족저압 불균형 인지와 즉각적인 교정)

  • Hanna Park;Bonhak Koo;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.28 no.1
    • /
    • pp.83-97
    • /
    • 2024
  • A plantar pressure mat with visual notifications was developed to confirm whether individuals can effectively balance themselves and correct imbalances. The sensor-embedded mat was made with a commercial yoga mat, and was tested on seven working women in their 30s to determine plantar pressure distribution when standing and squatting, and if they could recognize and correct imbalances with visual feedback. The study found that visual notifications significantly changed the plantar pressure ratio of the forefoot and hindfoot, as well as the left and right foot plantar pressure ratio. Without notifications, the center of gravity was more concentrated in the rear foot than the forefoot in both standing and squatting positions. Visual notifications showed that the center of gravity, which was largely focused on the rear foot, was distributed to the forefoot, resulting in a more evenly distributed center of gravity throughout the sole. For the change in left and right plantar pressure, the weight that was largely loaded on the left side was distributed to the right foot through the visual notification mat, confirming a more balanced plantar pressure.

A Study of the Correlation between Spinal Curvatures, Plantar Pressure and Foot Angles (척추의 만곡과 족저부 압력 분포 및 발각도의 상관성 연구 - 족부 진단기의 임상적 활용 가능성 검토를 위한 예비연구 -)

  • Eun, Young-Joon;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.2 no.2
    • /
    • pp.1-16
    • /
    • 2007
  • Objectives : The purpose of this study was to identify spinal curvatures, plantar pressure and foot angles in a walking. Methods : 19 outpatients under 19 years old were included. Plantar pressure and foot angle in a walking were measured by using Gaitview AFA-50. Spinal curvatures were measured by using radiograph. Results : The cervical lordotic angle is significantly difference with left and right plantar pressure(p=0.027). The thoracic kyphotic angle is significantly difference with left and right plantar pressure(p=0.026). Cobb's angle is significantly difference with left and right plantar pressure(p=0.027). The other plantar pressure were no difference from spinal curvatures and foot angle in a walking. Conclusion : There were no correlation between plantar pressure, spinal curvatures and foot angle. We consider that needed more additional study.

The Effects of the Upright Body Type Exercise Program on Foot Plantar Pressure of Archers

  • Kim, Dong-Kuk;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • Objective: This study collected data on muscle fatigue and ground reaction force during walking to provide a basis for development of custom-fitted outdoor walking shoes. The study analyzed an upright body exercise program using spine stabilization technique to determine the effect on foot plantar pressure in archers, demonstrate the effectiveness of upright body exercise, and develop a new, effective, and efficient training program. Method: A 12-week upright body exercise program was evaluated for the effect on plantar pressure in archers. Ten prize-winning archers (3 men, 7 women) in B metropolitan city, each with ${\geq}10years$ of experience, were given an explanation of the content and purpose of the program, and provided informed consent. Upright body exercise was performed 3 times a week for 12 weeks. A resistive pressure sensor was used to measure foot plantar pressure distribution and analyze quantitative information on variation in postural stability and weight shifting in dynamic balance during shooting, as well as plantar pressure in static balance with the eyes open and closed. Results: There were no significant differences in foot plantar pressure before and after participation in the exercise program. There was no statistically significant difference in foot plantar pressure in static balance with the eyes open or closed, or in foot plantar pressure in dynamic balance during shooting. Conclusion: An upright body exercise program had positive effects on foot plantar pressure in static and dynamic balance in archers by reducing body sway and physical imbalance during shooting and with eyes closed. This program is expected to help archers improve their posture and psychological state, and thereby improve performance.

The Effect of Changes in Foot Cutaneous Sensation on Plantar Pressure Distribution during Gait (발바닥의 피부 감각 변화가 보행 중에 족저압 분포에 미치는 영향)

  • Seong, Dae-Young;Kim, Joong-Hwi;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.5
    • /
    • pp.306-312
    • /
    • 2012
  • Purpose: The purpose of this study was to examine the effect of changes in foot cutaneous sensation on plantar pressure distribution during gait. Methods: Sixteen healthy young subjects participated in this experiment. All subjects performed two trials of walking under three somatosensory conditions induced by a normal facilitatory insole that provides increased plantar sensory stimulation, and application of lidocaine cream to the plantar surface of the foot to reduce the sensitivity of the soles. Semmes-Weinstein monofilaments were used for evaluation of reduced plantar sensation. The Pedar system was used for measurement of pressure distribution at the plantar surface of the foot. Results: Pressure in the lateral midfoot area showed an increase with increasing and decreasing sensory inputs. When sensory input was increased, plantar pressure showed a decrease in the forefoot area. When sensory input was decreased, plantar pressure showed an increase in the lateral forefoot area and a decrease in the hallux area. Conclusion: By altering sensory feedback, plantar pressure distribution is changed during gait. Plantar cutaneous afferents play an important role in plantar distribution.

Change of Plantar Pressure Distribution according to Stance Patterns during Tennis Forehand (테니스 포핸드의 스탠스 유형에 따른 족저압력분포의 변화)

  • Lee, Tae-Keun;Kim, Seung-Jae;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.185-196
    • /
    • 2005
  • Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and closed stance and it is very important to know the patterns of plantar pressure distribution for the better understanding of forehand stroke. Therefore, the purpose of this study was to investigate the change of plantar pressure distribution according to close, square and open stance patterns during forehand stroke in tennis. Three high school tennis players were recruited for the study and required to perform forehand stroke five consecutive trials in the condition of open, square and close stance. The forehand strokes were filmed with two digital video cameras and measured with pedar system for plantar pressure. The plantar regions under the foot were divided into 3 regions, which were forefoot, midfoot, and rear foot.. In conclusion, the first hypothesis, "The plantar pressure of close stance during forehand stroke would be distributed more largely to the left foot.", was rejected and the result showed that The plantar pressure of close stance during forehand stroke was distributed transferring from right foot to left foot similar to square stance. The second hypothesis, "The plantar pressure of square stance during forehand stroke would be distributed transferring from right foot to left foot." was accepted. The third hypothesis, "The plantar pressure of open stance during forehand stroke would be distributed more largely to the right foot.", was accepted.