• Title/Summary/Keyword: Plant uptake

Search Result 825, Processing Time 0.028 seconds

Bioconcentration factor of perfluorochemicals for each aerial part of rice (수도작 작물의 과불소화합물 흡수이행성)

  • Choi, Geun-Hyoung;Lee, Deuk-Yeong;Bae, Ji-Yeon;Rho, Jin-Ho;Moon, Byung-Cheol;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.191-194
    • /
    • 2018
  • Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are emerging pollutants in agricultural product, and the residual patterns and the uptake potentials were only studied on several crops, not on rice. The residue level and bioconcentration factor (BCF) of PFOA and PFOS were investigated on the low ($1mg\;kg^{-1}$) and the high contaminated soil ($5mg\;kg^{-1}$) groups. The residue levels in brown rice in the low group and in the high group were 0.002-0.004 and $0.008-0.030mg\;kg^{-1}$ of the each perfluorinated compounds (PFCs), and in the rice husk were $0.035-0.074mg\;kg^{-1}$ and $0.125-0.376mg\;kg^{-1}$ of the each PFCs, respectively. Furthermore, the residues in rice straw were the highest level in the all rice parts both in the groups. The PFOA and PFOS were reached to $3.723mg\;kg^{-1}$ and $7.641mg\;kg^{-1}$, respectively, and the BCF (1.474 and 4.700) as well.

Effect of Water Management and Lime Application on the Growth and Copper Uptake of Paddy Rice (수도(水稻)의 동피해(銅被害)에 대한 물관리(管理) 및 석회물질(石灰物質)의 효과(效果))

  • Kim, Kyu-Sik;Kim, Bok-Young;Lee, Min-Hyo;Han, Ki-Hak;Kim, Maun-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 1985
  • A pot experiment was conducted to find out the effects of water management, slaked lime and wollastonite on growth and Cu uptake of rice at Cu added soil. The soil was adjusted to 0, 50, 100 and 200 ppm concentration of Cu. The application amount of slaked lime was the lime requirement plus 150 ㎏/l0a and wollastonite 200 ㎏/10a, respectively. The copper concentration in soil which reduced yield significantly was 133.1 ppm for submersion and 136.8 ppm for intermittent irrigation. The application of lime and wollastonite reduced Cu content in brown rice as well as increased rice yields compared to that of no lime. The copper content in plant was increased with increasing soil Cu concentration, however, reduced with submersion and application of slaked lime, and increased with increasing the ratio of Cu/Ca+Mg equivalent in soil.

  • PDF

Effect of Nitrogen Fertilization Levels and its Split Application of Nitrogen on Growth Characters and Productivity in Sorghum × Sudangrass Hybrids [Sorghum bicolor (L.) Moench]

  • Jung, Jeong Sung;Kim, Young-Jin;Kim, Won Ho;Lee, Sang-Hoon;Park, Hyung Soo;Choi, Ki Choon;Lee, Ki-Won;Hwang, Tae-Young;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • Nitrogen (N) fertilizer management is one of the important aspects of economic production of sorghums in sustainable agriculture. The aim of the study was to evaluate the effects of different N application rates and its split N application methods on productivity, growth characteristics, N accumulation, N use efficiency (NUE), and feed value of Sorghum ${\times}$ Sudangrass hybrids. Treatments consisted of five N application rates (0, 150, 200, 250, and $300kg\;ha^{-1}$) and two split N application methods (40% in basal N, 30% at the growing stage, and 30% after the first harvest vs. 50% in basal N and 50% after the first harvest). Plant height, leaf width, and stem diameter were increased ($p{\leq}0.05$) with increasing N fertility rates at each harvest. Chlorophyll content (expressed as SPAD values) was the highest at a rate of $300\;kg\;N\;ha^{-1)$ (first harvest, 46.32; second harvest, 33.09). It was the lowest at zero N (first harvest, 21.56; second harvest, 18.5). Total N, N uptake, and NUE were increased with higher N rates. Split N application had little effect on total N, amount of N uptake, or NUE. Total dry matter yields were the highest ($21,715\;kg\;ha^{-1}$) at a rate of $300\;kg\;N\;ha^{-1}$. It was the lowest ($10,054\;kg\;ha^{-1}$) at zero N. Our results suggest that more than $300\;kg\;N\;ha^{-1}$ can improve dry matter yield to be above 116% compared to zero N, thus enhancing the agronomic characters of sorghums. However, no significant effect had been found for split N application. Further work is needed to determine the optimal N levels and the effect of split N application rates.

Effects of Time and Amounts of Top Dressed Nitrogen at the Panicle Formation Stage on Growth and Yield of Puddled-Soil Drill Seeded Rice (무논 골뿌림에서 질소(窒素) 수비(穗肥) 시기(時期) 및 시용량(施用量)에 따른 벼의 생육(生育)과 수량성(收量性))

  • Yoo, Chul-Hyun;Shin, Bog-Woo;Lee, Sang-Bog;Cho, Guk-Hyun;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.3-7
    • /
    • 1996
  • Effects of the nitrogen application time and amounts on the nitroger. uptake and recovery of fertilizer nitrogen applied at panicle formation stage was investigated in connection with the growth and yield of rice drill-seeded in puddle-soil. silt loam of Jeonbuk series. Urea was applied as nitrogen source. Nitrogen uptake and recovery of fertilizer nitrogen by rice plant was highest in the treatment applied nitrogen at 20 days before heading. Culm length, internode length (4th and 5th) and lodging index were increased by earlier application time and higher level of nitrogen. but filled grain ratio and 1,000 grain weight showed the opposite trend Panicle number per square meter and grain number per panicle was significantly decreased in nitrogen application at 10 days before heading. Rice yield was the highest in 33kgN/ha(conventional amount at 20days before heading, and yield in 26kgN/ha(80% of conventional amount) at 20 days before heading and in 33kg/ha at 15days before heading were nearly the same as conventional treatment.

  • PDF

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation (지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향)

  • Park, Jin Myeon;Lim, Tae Jun;Lee, Seong Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

Effect of Root Medium Formulations on Growth and Nutrient Uptake of Hot Pepper Plug Seedlings (혼합상토의 조성이 고추 플러그 묘의 생육 및 무기원소 흡수에 미치는 영향)

  • Choi, Jong-Myung;Ahn, Joo-Won;Ku, Ja-Hyeong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.369-376
    • /
    • 2006
  • This research was conducted to evaluate the effect of root medium formulations on growth and nutrient uptake of hot pepper 'Knockgwang' in 72-cell plug trays. To achieve this, the nine root media were formulated by adjusting blending rate of perlite (PL) to coir (CO), peatmoss (PM) or coir+peatmoss (5:5, v/v, COPM). Then, the growth characteristics and tissue nutrient contents were determined at 35 and 70 days after sowing. The elevated blending rate of PL to CO increased fresh and dry weight of hot pepper at 35 days after sowing. The treatments of 20% in blending rate of PL to PM or that of 0% to COPM produced the highest fresh and dry weight among perlite treatments of PM or COPM. The results of crop growth at 70 days after sowing also showed similar trends to those of 35 days after sowing. The elevated blending rate of PL to CO or PM decreased tissue $P_2O_5$ and K contents and increased Ca and Mg contents at 35 days after sowing, With the equal blending rate of perlite, the plant tissue grown in CO had higher K contents and lower N, Ca and Mg contents than those in PM and COPM. The elevated blending rate of perlite in three organic matter also decreased tissue $P_2O_5$ and K contents at 70 days after sowing, but Ca and Mg contents were the highest in the treatment of 20% PL in CO, 40% PL in PM and 40% PL in COPM among perlite treatments in each organic matter.

Physiological Responses for Soil Water Stresses in 'Mihong' Peach Tree (복숭아 '미홍'의 토양 수분 스트레스에 따른 생리반응)

  • Kwon, Yong Hee;Lee, Jae Man;Han, Hyun Hee;Ryu, Suhyun;Jeong, Jae Hoon;Do, Gyung-Ran;Han, Jeom Hwa;Lee, Han-Chan;Park, Hee-Seung
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • The present study was conducted to characterize physiological responses of aerial part according to soil water stresses in 'Mihong' peach trees. Discolorations, wilting and falling of leaves were observed in chronological order as response for waterlogging and no irrigation and the phenomena started from basal to end of shoots. Shoot growth in elongation and thickness decreased and fallen leaves were severe in waterlogged trees. Function of water uptake by roots and photosynthesis and leaf respiration decreased by waterlogging. Leaf chlorophyll contents decreased in both treatments. In waterlogging treatment, decrease of chlorophyll was observed in normal leaves with waterlogging using light microscopy. Starch content was lower in both treatment and carbohydrate content was lower in root with waterlogging. These results demonstrated that waterlogging weakened the function of soil water uptake and movement and decreased photosynthesis and fallen leaves. Finally the peach trees would wither or suffer low temperature damage through the shortage of reserve accumulations. We suggested that waterlogging damage in peach trees could be reduced to take notice of irrigation and install drainage facility to improve soil condition.

Estimation of the relationship between below-ground root and above-ground canopy development by measuring dynamic change of soil ammonium-N concentration in rice

  • Fushimi, Erina;Yoshida, Hiroe;Tokida, Takeshi;Nakagawa, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.183-183
    • /
    • 2017
  • In the early part of rice growth, root volume primarily limits the amount of plant-accessible nitrogen (N). Therefore, knowledge of the root development is important for modeling N uptake of rice. The timing when the volume of rhizosphere cover the whole soil is also important to carry out timely top dressing. However, information about initial root expansion and associated N uptake is limited due to intrinsic technical difficulties in assessing below-ground processes. Some studies, however, showed a close relationship between below-ground root and above-ground leaf development, suggesting a possibility that above-ground attributes could serve as surrogates for the root processes. In this study, we investigated the relationship between below-ground and above-ground development of rice. Field experiments were conducted where we cultivated Koshihikari (a leading cultivar in Japan) for four different cropping schedules in 2012. In 2016, Gimbozu (HEG4) and three flowering time mutant lines of Gimbozu (X61 (se13), HS276 (ef7), DMG9 (se13, ef7)) were examined for a single season. Experiments were performed with three replications in a completely randomized design. We monitored ammonium-N concentration ([NH4+-N]) in soil solution by repeatedly taking samples from a porous tubing (10-cm long) vertically inserted at the most distant point from surrounding rice hills. Samples were taken in triplicate (= triplicate tubes) and every three days from transplanting in each experimental unit. For above-ground attributes, leaf area index (LAI) was measured in 2012, whereas soil coverage ratio was estimated by image processing in 2016. Results showed that [NH4+-N] increased gradually after transplanting and then rapidly decreased from a certain day. This distinct drop in [NH4+-N] informed us the timing at which the rice root system reached the point of porous tubing and thus essentially covered the whole soil volume. The LAI at the dropping point was about 0.43 regardless of the cropping schedules in 2012 experiment. In 2016, the coverage ratio at the N dropping point was within the range of 0.12 to 0.19 for four genotypes having different growth durations. In addition, the coverage ratios at seven weeks after the transplanting showed a good correspondence to LAI across the four genotypes. We therefore conclude that both LAI and coverage ratio may serve as robust indicators for root development and might be useful to estimate the timing when the root system fully cover the soil volume. Results obtained here will also contribute to develop models that can predict not only above-ground canopy development but also associated below-ground processes.

  • PDF

Uptake of endosulfan and procymidone from arable soil by several vegetables I (green house study) (토양 중 endosulfan과 procymidone의 작물에 대한 흡수.이행 I (실내시험))

  • Park, Hyeon-Ju;Choi, Ju-Hyeon;Park, Byung-Jun;Kim, Chan-Sub;Ihm, Yang-Bin;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.280-287
    • /
    • 2004
  • We investigated the residual amounts of endosulfan and procymidone taken by vegetables grown in hydroponics culture and field conditions treated with the pesticides in order to evaluate safe cultivation concentration of the pesticides in the vegetables. Endosulfan and procymidone were selected as test pesticides because they have been reported to frequently detect in agricultural products at different concentrations. In hydroponic culture, by Chinese cabbage, procymidone was absorbed 3.8 times higher than endosulfan. The higher the pesticide concentration get, the worse the plant grew. In soil treated with 10 mg/kg of endosulfan, the pesticide absorbed by Leafy radish, Chinese cabbage and radish was less then their MRLs. In case of carlot, the residue level in soil which did not exceed its MRL was 1 mg/kg. The concentrations of procymidone in soil which did not exceed the MRLs in Leafy radish, Chinese cabbage, radish and carrot were 10, 10, 2 and 1 mg/kg, respectively Usually aged endosulfan and procymidone residues were less absorbed into crops than the fresh ones. Chinese cabbage absorbed more endosulfan and pocymidone than leafy radish, radish doing more than carrot.

Relative Effectiveness of Bone Meal as a Phosphorus Fertilizer Compared with Fused Phosphate (용성인비와 비교한 골분의 인산질 비료 효과)

  • Chung, Jong-Bae;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • BACKGROUND: Bone meal is commonly used as a phosphorus (P) fertilizer in organic farming. Effectiveness of bone meal was compared with mineral P fertilizer to elucidate the optimum application rates of bone meal in crop production. METHODS AND RESULTS: The effects of bone meal and fused phosphate on plant growth and P uptake were determined in a pot experiment with maize (Zea mays L.) in a clay loam soil. Bone meal and fused phosphate were applied at 150 and 300 mg $P_2O_5/kg$ soil, and maize was grown for 3 consecutive growth periods of 4 to 5 weeks each. As compared with fused phosphate, total shoot growth of maize per pot was 3-6% lower in bone meal fertilization, and the difference was not significant in the application of 300 mg $P_2O_5/kg$. At the same P application rate, uptake of P by maize plants was 7-9% lower in bone meal treatment. The P use efficiency in bone meal treatments ranged from 11.9-13.6%, equivalent to 73-84% of the efficiency for fused phosphate treatments. CONCLUSION: The equivalence of immediate effectiveness of bone meal as a P fertilizer was at least 90% compared with fused phosphate in the pot experiment with maize. The results indicate that bone meal could be a reasonable alternative to chemical P fertilizers.