• 제목/요약/키워드: Plant root status

검색결과 61건 처리시간 0.022초

산성배수 비탈면의 생태적 녹화를 위한 산성배수 중화기법 연구 (A Study on the Acid Drainage Neutralizing System for Ecological Vegetation on the Acid Drainage Slope)

  • 조성록;심상렬;김재환
    • 한국지반환경공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.27-33
    • /
    • 2019
  • 산성배수가 발생하는 비탈면에서 생태적 녹화를 위한 산성배수 중화기법을 알아보기 위한 연구를 진행하였다. 산성배수중화기법을 위한 4가지 유형의(무처리, 석회고토 처리, 인산염 처리, 석회고토 + 인산염 처리) 시험구를 조성하였다. 실험결과 산도(pH), 피복율(%), 고사율(%), 식물뿌리상태 등에서 중화기법에 따른 유의차가 발생하는 것을 알 수 있었다. 중화기법에 따른 연구결과 (첫 번째 : 석회고토 + 인산염 처리, 두 번째 : 인산염 처리, 세 번째 : 석회고토 처리, 네 번째 : 무처리) 순서로 산도 중화 및 식물생장에 효과적이었다. 산성배수 비탈면에서 석회고토 처리와 인산염 처리는 토양산도 중화와 식물생장에 효과적이었으나, 석회고토 처리에 비해 인산염 처리가 더 효과적이었으며, 인산염 처리가 황화광물의 코팅 효과 때문에 토양산도 중화와 식물 생장에 더 효과적이라는 것을 알 수 있었다.

고등식물체에서 유년기의 생리적 특성 (Physiological Character of Juvenility in Higher Plant)

  • 양덕조
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.191-211
    • /
    • 1987
  • Common usage of the concept of juvenility implies that there is one physiological phase, the juvenile phase, which manifests itself in the various morphological and physiological phenomena observed in juvenile higher plants. The juvenile phase is often defined as that time from seed germination until the plant attains the ability to flower regulating such behaviour. This definition precludes plants from flowering in the juvenile phase. It is of major interest, therefore, to identify the physiological controls(Bluehreife) regulating such behavior. The length of the juvenile period in higher plants ranges from one year to over 60 years in different species. The long juvenile period of seedling is the main cause of the long duration of the breeding process. I determined the length of the juvenile period in various plants and its control of phase changes in natural system in relation to factors such as plant size and age, shoot morphology, apex size, root system and phytohormonal and nutritional status is reviewed. From the own experimental and observational evidence available it appears that both hormonal and nutritional factors can be involved in control of juvenility but that a specific juvenile or flowering hormone is not involved. Grafting, ringing, scoring, root pruning and fertilization have been used to accelerate flowering, but in most cases these cultured treatments are only successful on plants that were passed the juvenile phase. It is suggested that there are intrinsic difference between the meristematic cells of the apieces of juvenile and adult shoot, which are thus determined with respect to there development potentialities. The problems associated with the maintenance of the determined state through mitosis are discussed. The properties of transitional forms of Ribes nigrum L. intermediate between the juvenile and adult phase, are descrived and there implications discussed. Analogies are drawn between juvenile phenomena in woody perennials and in herbaceous species.

  • PDF

국내콩 형질전환 기술개발 (Development of genetic transformation method of Korean soybean)

  • 전은희;정영수
    • Journal of Plant Biotechnology
    • /
    • 제36권4호
    • /
    • pp.344-351
    • /
    • 2009
  • Current status of soybean transformation method in Korera was reviewed with recent publications. Most frequently used method for genetic transformation was Agrobacterium-mediated transformation on cotyledonary node which is most popular method used in foreign country. In addition to this, various methods such as sonicationmediated transformation, in planta transformation, and transformation on meristem tissue of germinating seed, have been tried in Korea, even though their efficiencies on repeatability and stability were relatively low. Based on the promising results developed recently by reviewer, several important considerations for successful soybean transformations were suggested. They are 1) proper genotype screening, 2) targeting transformation on exact point, 3) multiple shoot formation, 4) efficient selection pressure, 5) successful shoot elongation, 6) efficient root formation. These are the basic requirements for stable and highly efficient soybean transformation of Korean soybean.

수원시 덕영대로의 가로수 건강성 평가 및 주요 영향요인 분석 (Analysis of Health Status of Street Trees and Major Affecting Factors on Deogyeong-daero in Suwon)

  • 김은영;정경민
    • 한국환경복원기술학회지
    • /
    • 제22권2호
    • /
    • pp.49-57
    • /
    • 2019
  • The street trees increase the liveability of cities by reducing stormwater runoff, improving air quality, storing carbon, providing shade, and ameliorating the urban heat-island effect. In this study, the health status of street trees in Suwon was evaluated, and the factors affecting the growth of the trees were also derived. In order to evaluate the growth and health of street trees, field survey was carried out on a total of 125 trees in 25 sections of the Deogyeong-daero where is through the city. During the field survey, the following items were examined: Street trees health status (i.e. species, height, DBH (diameter at breast height), planting types, vigor, etc.), soil factors (i.e. soil temperature, humidity, pH, hardness, etc.), and environmental factors (i.e. landuse, road width, etc.). As the results of field survey, the main species of the street trees was Zelkova serrata, which was healthy in most of the sections. The factors such as planting types, soil temperatures, tree root cover, road extension, distance from the road were derived to affect the growth and health of street trees, and the differences were significant. The results of this study were derived the following conclusions for vigorous street trees: First, it is important to install and maintain the protection facilities like tree root cover for the growth of trees. Second, it is necessary to discuss how to plant multiple trees in narrow spaces like a street green space. Third, it is important to provide appropriate soil conditions continuously for growth of threes. Finally, it should be utilized as a mitigation measure of urban heat island effects.

광주광역시 노거수의 분포 및 생육현황 (Distribution and Growth Status of Legally Protected Old and Big Trees in Gwangju, Korea)

  • 임동옥;제갈은기
    • 한국환경생태학회지
    • /
    • 제25권5호
    • /
    • pp.736-746
    • /
    • 2011
  • 본 연구는 광주광역시에 분포하는 보호수 및 노거수의 분포 및 생육현황을 조사하여 보호수와 노거수 관리방안을 제시하고자 시도하였다. 광주광역시에 분포하는 보호수는 9종 68개체로 이 중 광산구가 18개체로 가장 많았으며, 노거수는 10종 155개체로 확인되었다. 기존문헌에 잘못 기록된 종명은 정확한 식물명으로 수정되어야 한다. 보호수의 활력도 평균은 1.2였으며 지면상태 평균은 1.7이었고 노거수의 활력도 평균은 1.3, 지면상태 평균은 2.0으로 활력도는 큰 차이가 없었고 지면 상태는 노거수가 조금 더 좋지 못한 것으로 나타났다. 활력도가 3.2~4.0범위를 보여 절대관리가 필요한 보호수는 광산구 송대동 대촌마을 은행나무 1개체 이었고, 노거수는 광산구 산수동 감동마을의 왕버들 1개체로 나타났다. 보호수 및 노거수의 관리방안에서 제일 중요한 것은 기본적으로 노거수가 자랄 수 있는 최소한의 생육공간을 확보하는 것으로 보호수와 노거수 근계 위의 아스팔트나 시멘트 포장을 제거해 주어야 한다고 판단된다.

Ohm의 법측(法測)을 이용(利用)한 물 이동(移動)의 수학적(數學的) 해석(解析) (A Mathematical Analysis of Water Flow Model Using Ohm's Analogy)

  • 정영상
    • 한국토양비료학회지
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 1981
  • 토양(土壤)-근계(根系)에 있어서 물 흡수이동(吸收移動)을 ohm의 법측(法測)을 이용(利用)하여 전기회로(電氣回路) 상사모형(相似模型)으로 표현(表現)하고 그 계(系)의 분석해(分析解)를 구(求)하였다. 그 결과(結果) 토양계(土壤系)의 "유효토양수(有效土壤水) Potential($\hat{\psi}_s$)"과 근계(根系)의 "유효근저항(有效根抵抗)($\hat{R}_{\tau}$)"을 정의(定義)하였다. $$\hat{\psi}_s-\hat{R}_{\tau}g_{\tau}={\psi}_0$$ 포장상태(圃場狀態)에서 얻어진 작물(作物)의 Crown water potential(${\psi}_0$)와 Radial resistance(Ra) 및 Axial resistance(Rx)를 근거(根據)로 이 모형(模型)을 검정(檢定)한 결과(結果) 그 타당성이 인정(認定)되었으며 앞으로 토양(土壤)-근계(根系)의 물 이동(移動) 측면(側面)에서 유효토양수분량(有效土壤水分量)과 뿌리의 역할(役割)을 구명(究明)하는데 중요(重要)한 의미(意味)를 갖고 있다고 판단(判斷)된다.

  • PDF

Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability

  • Wei, Wei;Ye, Chen;Huang, Hui-Chuan;Yang, Min;Mei, Xin-Yue;Du, Fei;He, Xia-Hong;Zhu, Shu-Sheng;Liu, Yi-Xiang
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.627-636
    • /
    • 2020
  • Background: Cultivation of medicinal crops, which synthesize hundreds of substances for curative functions, was focused on the synthesis of secondary metabolites rather than biomass accumulation. Nutrition is an important restrict factor for plant growth and secondary metabolites, but little attention has been given to the plasticity of nutrient uptake and secondary metabolites synthesis response to soil nitrogen (N) change. Methods: Two year-field experiments of Sanqi (Panax notoginseng), which can synthesize a high level of saponin in cells, were conducted to study the effects of N application on the temporal dynamics of biomass, nutrient absorption, root architecture and the relationships between these parameters and saponin synthesis. Results: Increasing N fertilizer rates could improve the dry matter yields and nutrient absorption ability through increasing the maximum daily growth (or nutrient uptake) rate. Under suitable N level (225 kg/ha N), Sanqi restricted the root length and surface and enhanced the root diameter and N uptake rate per root length (NURI) to promote nutrient absorption, but the opposite status of Sanqi root architecture and NURI was found when soil N was deficient. Furthermore, increasing N rates could promote the accumulation of saponin in roots through improving the NURI, which showed a significant positive relationship with the content of saponin in the taproots. Conclusion: Appropriate N fertilizer rates could optimize both root architecture and nutrient uptake efficiency, then promote both the accumulation of dry matter and the synthesis of saponins.

해가림 피복물의 색상이 고려인삼의 생육 및 Saponin 함량에 미치는 영향 (Effect of Shading Net Colors on the Growth and Saponin Content of Korean Ginseng (Panax ginseng C.A. Meyer))

  • 목성균;천성기
    • Journal of Ginseng Research
    • /
    • 제18권3호
    • /
    • pp.182-186
    • /
    • 1994
  • This study was conducted to define the effects of color of polyethylene (P.E.) net shading on the meteorological conditions under the shading growth status, photosynthesis and saponin contents of ginseng plant. Red and blue polyethylene net shading (4 fold) showed a good light intensity of ginseng growth, but red one not only increased air temperature but also resulted in early defoliation. Photosynthetic rate of ginseng leaves was increased in order of red, blue and black shade, Root yield and saponin contents were significantly increased red and blue net as compared with those of common straw shading. Blue color appeared to be most recommendable.

  • PDF

인산결핍이 대두근류의 bacteroid 함량과 energy 상태에 미치는 영향 (The effect of phosphorus stress on the energy status and bacteroid content in soybean nodules)

  • 사동민;임선욱
    • Applied Biological Chemistry
    • /
    • 제35권6호
    • /
    • pp.449-456
    • /
    • 1992
  • 인산처리가 근류의 bacteroid 함량과 energy 상태에 미치는 영향을 살펴보기 위하여 Bradyrhizobium japonicum MN10을 접종한 대두식물(Glycine max [L.] Merr.)에 저해농도(0.05 mM-P)와 정상농도(1.0 mM-P)를 처리하여 온실에서 재배하였다. 인산결핍은 식물체의 근류량과 근류량 식물체량의 비에 유의성있는 감소를 보였다. 잎, 줄기, 뿌리의 인산농도는 인산결핍에 의하여 75%가 감소하였으나 근류의 인산농도는 40%만 감소하였다. 근류의 bacteroid 함량과 근류에서 전인산, 전질소의 bacteroid와 식물세포로의 분배는 인산결핍의 영향을 받지 않았으며 전질소의 22%, 전인산의 27%가 bacteroid에 존재하였다. 근류의 ATP농도, 전 adenylate 농도와 energy charge는 인산결핍에 의하여 각각 77%, 46%, 37%가 감소되었다. 인산결핍은 근류내 식물세포의 ATP 농도와 energy charge를 각각 86%, 59%를 감소시켰으나 bacteroid의 ATP농도와 energy charge에는 영향을 미치지 않았다. 이러한 결과는 근류가 인산의 강한 보유원이며, 기주식물에 대한 인산결핍조건하에서 bacteroid는 정상적인 인산 농도와 energy양을 함유한다는 것을 나타낸다.

  • PDF

Molecular Characterization of Silicon (Si) Transporter Genes, Insights into Si-acquisition Status, Plant Growth, Development, and Yield in Alfalfa

  • Md Atikur Rahman;Sang-Hoon Lee;Yowook Song;Hyung Soo Park;Jae Hoon Woo;Bo Ram Choi;Ki-Won Lee
    • 한국초지조사료학회지
    • /
    • 제43권3호
    • /
    • pp.168-176
    • /
    • 2023
  • Silicon (Si) has the potential to improve plant growth and stress tolerance. The study aimed to explore Si-involving plant responses and molecular characterization of different Si-responsive genes in alfalfa. In this study, the exogenous supplementation of Si enhanced plant growth, and biomass yield. Si-acquisition in alfalfa root and shoot was higher in Si-supplemented compared to silicon deficient (-Si) plants, implying Si-acquisition has beneficial on alfalfa plants. As a consequence, the quantum efficiency of photosystem II (Fv/Fm) was significantly increased in silicon-sufficient (+Si) plants. The quantitative gene expression analysis exhibited a significant upregulation of the Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes in alfalfa roots, while BOR1, BOR4, NIP2, and NIP3 showed no significant variation in their expression. The MEME results further noticed the association of four motifs related to the major intrinsic protein (MIP). The interaction analysis revealed that NIP5;1 and Lsi1 showed a shared gene network with NIP2, BOR1, and BOR4, and Lsi2, Lsi3 and NIP3-1, respectively. These results suggest that members of the major intrinsic proteins (MIPs) family especially Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes helped to pass water and other neutral solutes through the cell membrane and those played significant roles in Si uptake and transport in plants. Together, these insights might be useful for alfalfa breeding and genome editing approaches for alfalfa improvement.