• Title/Summary/Keyword: Plant risk

Search Result 993, Processing Time 0.025 seconds

A Study on Fire and Explosion Index in the Petro-chemical Plant (위험성 평가중 화재.폭발 지수 산정방법에 관한 고찰)

  • 김진곤;김광일
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.17-29
    • /
    • 1993
  • The method has been proposed for the risk assessment of petro-chemical plant, specially which can evaluate relative risk levels on the materials and process-es. The each potential risk of materials and processes are derived numerically and combined these values, finally Fire and Explosion Index was found. Material factor was evaluated with the flammability and the reactivity and process factor with emprical factor called penalty. This F&EI can be performed for relative risk assesment at the whole plant and directely applicable at the line.

  • PDF

The Report on the Taxonomic Characters, Ecological Risk and Weed Risk Assessment of Putative Invasive Alien Plants which are Designated in Law by the Ministry of Environment in Korea as Environmentally Harmful Species (IV)

  • Hyun, Jong Young;Yoon, Chang Young;Kim, Joo-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.616-632
    • /
    • 2021
  • We performed taxonomic reviews and habitat circumstances survey for 41 un-introduced environmentally harmful plants (as designated by the Ministry of Environment, Korea in 2016). And we investigated plant specimens from several herbaria and performed a field survey in the southeastern region of the United States. Based on the result, we presented the most comprehensive results of weed risk evaluation and taxonomic description up to now as well as classification keys for 11 species to apply the regulation management of putative invasive alien species - Senecio madagascariensis Poir., Sphagneticola trilobata (L.) Pruski, Ageratina riparia (Regel) R.M. King & H. Rob. (Asteraceae), Andropogon gayanus Kunth (Poaceae), Echinocystis lobata (Michx.) Torr. & A. Gray (Cucurbitaceae), Salvinia minima Baker (Salviniaceae), Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae), Asparagus asparagoides (L.) Druce (Asparagaceae), Alternanthera pungens Kunth (Amaranthaceae), Salpichroa origanifolia (Lam.) Thell., and Lycium ferocissimum Miers (Solanaceae).

Risk Identification and Priority method for Overseas LNG Plant Projects - Focusing on Design Phase - (해외 LNG 플랜트 리스크요인 도출 및 우선순위 평가 - 설계단계를 중심으로 -)

  • Jang, Woo-Sik;Hong, Hwa-Uk;Han, Seung-Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.5
    • /
    • pp.146-154
    • /
    • 2011
  • Korean contractors have been maintained sustainable growth since entering into overseas construction market for the first time in 1960' s. In 2010, Korean contractors ordered 761 billion (USD) from overseas markets. Especially, billion (USD) were earned by Korean contractors in overseas plant construction market which account for more than 80% of the total amount by Korean contractors. Nevertheless, many Korean contractors are suffering from lack of technological competitiveness and construction management skills in the design phase compared with global leading contractors. These conditions have directly effect on the success of projects in terms of cost, duration, and quality. So, this study focused on identifying the risk factors and developing risk priority method for the design phase of LNG plant projects whose market is expanding. Research procedures were conducted by the following three steps. First, total 57 risk factors were identified in design phase through extensive literature reviews and experts survey. Second, the authors developed risk priority method which are more suitable for design phase of LNG plant projects by using three criteria, Probability(P), Impact(I), and Coordination Index(CI). Finally, the suitability of risk priority method and practical applicability were verified through expert survey and interview. Consequently, if korean contractors use the suggested risk factors and priority method based on their own know-how and experiences, then more reasonable and rational risk management will be conducted in the design phase of LNG plant projects.

Analysis on Risk Factors of Reactor Containment Building Construction using Analytic Hierarchy Process (계층 분석 방법을 이용한 원자로 격납 건물 시공의 리스크 요인 분석)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Since the construction of Kori 1 was completed in 1978, the construction projects for nuclear power plant are increasingly expanded into domestic and foreign sites. However, some of construction sites of nuclear power plant have the problems of process delay and cost loss due to lack of ability of risk management. The construction of reactor containment building in nuclear power plant is especially dotted with many risk factors because it needs professional skills and large-scale resources due to long duration compared with different construction phase. Therefore, it needs the study that analyzes risk factors expected in construction of reactor containment building and suggests way of stable performance of projects. So, this study assesses risk factors of construction of reactor containment building. For the objectives, this study uses survey for group of minority specialists of 36 experts. The risks of 24 factors is classified by criterions of process, cost, safety, and quality and the results of assessment is analyzed by analytic hierarchy process. As the results, the importance and priority of risk factors classified by each criterion were calculated and the applicability of analytic hierarchy process was identified to analyze risk factors of nuclear power plant construction. These will be baseline data for risk management in construction phase of reactor containment building.

A Study on Implementation of Risk Based Inspection Procedures to a Petrochemical Plant (RBI 절차의 석유화학 플랜트 적용에 관한 연구)

  • Song, Jung-Soo;Shim, Sang-Hoon;Kim, Ji-Yoon;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.416-423
    • /
    • 2003
  • During the last ten years, the need has been increased for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. RBI (Risk Based Inspection) methodology is one of the most promising technologies satisfying the need in the field of integrity management. In this study, a user-friendly software, realRBl for RBI based on the API 581 code was developed. This software has modules for evaluating qualitative and semi-quantitative risk level, analyzing quantitative risks using the potential consequences of a failure of the pressure boundary, and assessing the likelihood of failure. A quantitative analysis was performed for 16 columns in a domestic NCC (Naphtha Cracking Center) plant whose operating time reaches about 12 years. Each column was considered as two equipment parts by dividing into top and bottom. Generic column failure frequencies were adjusted based on likelihood data. After determining release rate, release duration and release mass for each failure scenario, flammable/explosive and toxic consequences were assessed. Current risks for 32 equipment parts were evaluated and risk based prioritization were determined as a final result.

A Case Study on the Risk Assessment for Offshore Plant Solid Desiccant Dehydration Package by using HAZOP (HAZOP을 통한 해양플랜트 흡착식 탈수공정 패키지의 위험성평가 및 안전도 향상 방안)

  • Noh, Hyonjeong;Park, SangHyun;Cho, Su-gil;Kang, Kwangu;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.569-581
    • /
    • 2020
  • Since the dehydration packages of offshore plant deal directly with oil & gas, there is a great risk of fire and explosion during operation. Therefore, this study performed risk assessment through HAZard & OPerability (HAZOP) for solid desiccant dehydration package that can remove water component of natural gas in offshore floating liquefied natural gas (LNG) production facilities below 0.1 ppmv. The risk matrix was determined by dividing the likelihood and the severity into five levels separately by asset, life, environment and reputation. The piping & instrumentation diagram (P&ID) of the dehydration package was divided into 9 nodes. Total 22 deviations were assessed in consideration of the adsorption and desorption conversion cycle. A risk assessment based on deviations revealed 14 major hazards. Three representative types of hazards were open/close failure of the control valve, control failure of the heater, and abnormal operation of the regeneration gas cooler. Finally, we proposed the installation of additional safety devices to improve safety against these major hazards, such as safety instrumented functions, alarms, etc.

Management in the EPC Business for Overseas Power Plant Projects (해외 발전플랜트 EPC 사업의 리스크 분석 및 관리방안)

  • Park, Euiseung;Yoo, Hoseon;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.7 no.3
    • /
    • pp.48-64
    • /
    • 2011
  • In this work, risks in EPC project for overseas power plant projects are analyzed and risk management methods are suggested to reduce cost and to shorten time. 79% of risks occurred in the engineering phase for S project located in South-East Asia. The impact scales of risks on major project objectives which are cost, time, scope, and quality are analyzed as 3.5, 3.8, 2.7, and 3.7, respectively. The level of impact scales is very similar to each other except the impact scale of scope. The risk management methods suggested in this study have to be applied at the appropriate time to manage risks effectively. After that, risks are managed continuously by monitoring.

  • PDF

Estimation of the Liability Risk for Release of Chemicals at Chemical Plant (화학플랜트에서의 화학물질 누출사고에 대한 배상책임 위험도 산정)

  • Moon, Jung Man;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.438-449
    • /
    • 2020
  • This study is to improve the method of calculating the risk of liability that arise from release and dispersion of chemicals outside the plant in process industries such as chemical and petrochemical plants. To achieve this goal, the correlation factors with the risk of chemical release accident is derived by simulating release and dispersion of substances (14 types) designated by Ministry of Environment as preparation for accident, analyzing the cases of chemical release and effects of plant life damage. The method of calculating chemical liability risk was modified and supplemented based on the results obtained from the study. The correlation coefficient between the probit value of 14 chemical types and the liability risk by EURAM (European Union Risk Ranking Method) was -0.526, while the correlation coefficient with the modified chemical release accident risk was 0.319. Thus, the value from modified method shows that they appear to be correlated. According to modified calculating methodology, the correlation between ERPG-2 value and liability risk of 97 chemical types was -0.494 which is 19 times higher than existing liability risk correlation as absolute value. And the correlation coefficient of corrosion risk was 0.91. The standardized regression coefficients (β) value of correlation factors that affected the increase and decrease of risk were derived in order of Corrosion Index(0.713), ERPG-2 (0.400) and NFPA Health Index (0.0680) by values. It is expected that these findings this study result will also enable the calculation of reasonable chemical release liability risk for existing and new chemical, and will help use them as quantitative liability risk management indicators for chemical plant site.

Comparison of Relative Risk before and after SEMI S2-93A Implementation: Using a Semiconductor Plant in a Taiwan's Science Park as an Example

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chihj-Hung;Hwang, Guo-Ji
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.58-73
    • /
    • 2005
  • The objective of this study is to evaluate the equipment risk before and after SEMI S2-93A implementation, thus providing a guideline for safety improvement. Semiconductor Plant A located in Taiwan's Hsinchu Science Based Industrial Park with 147 manufacturing machines was used for risk assessment. This study was carried out in three steps. First, a preliminary hazard analysis was conducted. A detailed process safety evaluation was conducted (Hazard and Operability Study, HAZOP); and finally, the equipment risk comparison before and after Semiconductor Equipment Manufacturing Instruction (SEMI S2-93A) implementation. The preliminary hazard analysis results showed high risk in 21.77% of the manufacturing machines under risk assessment at Plant A. The largest percentage existed in the Diffusion Department. The machine types specified by the hazardous work site review and inspection according to Article 26 of Labor Inspection Regulation (the machines that use such chemicals as, $SiH_4$, HF, HCL, etc. and that are determined to be highly hazardous through preliminary hazard analysis) were added to the detailed process analysis and evaluation. In the third part of this evaluation, the machines at Plant A used for detailed process safety assessment were divided into two groups based on the manufacturing data before and after 1993. The severity, possibility, and actual accident analysis before and after SEMI S2-93A implementation were compared. The Semiconductor Equipment Manufacturing Instruction (SEMI S2-93A) implementation can reduce the severity and possibility of hazard occurrence.

Comparison on the Releasing Characteristics of Asbestos Fiber from Plant Slate Roof and House Slate Roof (공장과 주택 슬레이트지붕의 석면 노출특성 비교)

  • Jeong, Jae-won;Yoo, Eun-chul;Lee, Sang-Jonn;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.927-937
    • /
    • 2015
  • This study was performed to identify and quantify the asbestos fibers released from two types of asbestos-cement slate roofs. One is a plant roof installed in 1987 which contained 15% chrysotile, and the other is a residential roof installed before 1983 which contained 12% chrysotile. The concentrations of asbestos fibers in air surrounding asbestos-cement slate roofs and in the falling water harvested from the same roofs on rainy days ranged from 0.0012 to 0.0018 f/mL and from 1,764 f/L to 10,584 f/L, respectively. The concentration of inorganic fibers in the soil around asbestos-cement slate roofs was from 217 to 348 f/g. With the above results, the excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate based on US EPA IRIS (Integrated risk information system) model is within 5.5E-06 ~ 6.5E-06 levels which indicates that the levels do not exceed "the acceptable risk(1.0E-05)" recommended by WHO. The asbestos concentration in air, drained rainfall and soil around the plant slate roof was higher than that around residential slate roof, but the excess lifetime cancer risk (ELCR) from residential slate was higher than that from plant slate. This suggested that the enclose and encapsulation of residential roofs have priority in removal policy to minimize the exposure risk.