• Title/Summary/Keyword: Plant risk

Search Result 987, Processing Time 0.023 seconds

Development of a Daily Epidemiological Model of Rice Blast Tailored for Seasonal Disease Early Warning in South Korea

  • Kim, Kwang-Hyung;Jung, Imgook
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.406-417
    • /
    • 2020
  • Early warning services for crop diseases are valuable when they provide timely forecasts that farmers can utilize to inform their disease management decisions. In South Korea, collaborative disease controls that utilize unmanned aerial vehicles are commonly performed for most rice paddies. However, such controls could benefit from seasonal disease early warnings with a lead time of a few months. As a first step to establish a seasonal disease early warning service using seasonal climate forecasts, we developed the EPIRICE Daily Risk Model for rice blast by extracting and modifying the core infection algorithms of the EPIRICE model. The daily risk scores generated by the EPIRICE Daily Risk Model were successfully converted into a realistic and measurable disease value through statistical analyses with 13 rice blast incidence datasets, and subsequently validated using the data from another rice blast experiment conducted in Icheon, South Korea, from 1974 to 2000. The sensitivity of the model to air temperature, relative humidity, and precipitation input variables was examined, and the relative humidity resulted in the most sensitive response from the model. Overall, our results indicate that the EPIRICE Daily Risk Model can be used to produce potential disease risk predictions for the seasonal disease early warning service.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

A Study on the Operational Events of Domestic Nuclear Power Plants for Multi-unit Risk (원전 다수기 리스크 평가를 위한 국내 원전 사건이력 조사 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.167-174
    • /
    • 2019
  • Compared to a single nuclear power plant (NPP) risk, the commonalities existing in the multiple NPPs attribute the characteristics of the multi-unit risk. If there is no commonality among the multiple NPPs, there will be no dependency among the risks of multiple NPPs. Therefore, understanding the commonality causing multi-unit events is essential to assessing the multi-unit risk, and identifying the characteristics of the multi-unit risk is necessary not only to select the scope and method for the multi-unit risk assessment, but also to analyze the data of the multi-unit events. In order to develop Korea-specific multi-unit risk assessment technology, we analyze the multi-unit commonalities included in the operational experiences of domestic NPPs. We identified 58 cases of multi-unit events through detailed review of domestic nuclear power plant event reports over the past 10 years, and the multi-unit events were classified into six commonalities to identify Korea-specific characteristics of multi-unit events. The identified characteristics can be used to understand and manage domestic multi-unit risks. It can also be used as a basis for modeling multi-unit events for multi-unit risk assessment.

Dietary Fat and Physical Activity in Relation to Breast Cancer among Polish Women

  • Kruk, Joanna;Marchlewicz, Mariola
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2495-2502
    • /
    • 2013
  • Background: Dietary fat has been inconsistently associated with the risk of breast cancer. The purpose of this study was to examine the relationship between meat and animal and plant fat intake and breast cancer risk in subgroups by total lifetime physical activity, using data from a case-control study conducted in the Region of Western Pomerania, Poland. Materials and Methods: The study included 858 women with histological confirmed breast cancer and 1,085 controls, free of any cancer diagnosis. The study was based on a self-administered questionnaire including questions about socio-demographic characteristics, current weight and height, reproductive factors, family history of breast cancer and lifestyle habits. Unconditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results: High animal fat intake significantly increased OR from 1.7 times (OR=1.66, 95%CI=1.07-3.59) to 2.9 times (OR=2.9, 95%CI=1.37-6.14) independent of physical activity level, comparing the third versus the lowest quartile. Women with a high intake of red meat or processed meat and low physical activity showed increased risk of breast cancer: OR=2.70, 95%CI=1.21-6.03 and 1.78, 95%CI=1.04-3.59, respectively. The plant fat dietary pattern was negatively associated with breast cancer in sedentary women (OR=0.57, 95%CI=0.32-0.99). Conclusions: These results indicated that a diet characterized by a high consumption of animal fat is associated with a higher breast cancer risk in sedentary women, while consumption of plant fat products may reduce risk in the same group.

Earthquake hazard and risk assessment of a typical Natural Gas Combined Cycle Power Plant (NGCCPP) control building

  • A. Can Zulfikar;Seyhan Okuyan Akcan;Ali Yesilyurt;Murat Eroz;Tolga Cimili
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.581-591
    • /
    • 2023
  • North Anatolian Fault Zone is tectonically active with recent earthquakes (Mw7.6 1999-Kocaeli and Mw7.2 1999-Düzce earthquakes) and it passes through Marmara region, which is highly industrialized, densely populated and economically important part of Turkey. Many power plants, located in Marmara region, are exposed to high seismic hazard. In this study, open source OpenQuake software has been used for the probabilistic earthquake hazard analysis of Marmara region and risk assessment for the specified energy facility. The SHARE project seismic zonation model has been used in the analysis with the regional sources, NGA GMPEs and site model logic trees. The earthquake hazard results have been compared with the former and existing earthquake resistant design regulations in Turkey, TSC 2007 and TBSCD 2018. In the scope of the study, the seismic hazard assessment for a typical natural gas combined cycle power plant located in Marmara region has been achieved. The seismic risk assessment has been accomplished for a typical control building located in the power plant using obtained seismic hazard results. The structural and non-structural fragility functions and a consequence model have been used in the seismic risk assessment. Based on the seismic hazard level with a 2% probability of exceedance in 50 years, considered for especially these type of critical structures, the ratios of structural and non-structural loss to the total building cost were obtained as 8.8% and 45.7%, respectively. The results of the study enable the practical seismic risk assessment of the critical facility located on different regions.

Development of an Accident Sequence Precursor Methodology and its Application to Significant Accident Precursors

  • Jang, Seunghyun;Park, Sunghyun;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.313-326
    • /
    • 2017
  • The systematic management of plant risk is crucial for enhancing the safety of nuclear power plants and for designing new nuclear power plants. Accident sequence precursor (ASP) analysis may be able to provide risk significance of operational experience by using probabilistic risk assessment to evaluate an operational event quantitatively in terms of its impact on core damage. In this study, an ASP methodology for two operation mode, full power and low power/shutdown operation, has been developed and applied to significant accident precursors that may occur during the operation of nuclear power plants. Two operational events, loss of feedwater and steam generator tube rupture, are identified as ASPs. Therefore, the ASP methodology developed in this study may contribute to identifying plant risk significance as well as to enhancing the safety of nuclear power plants by applying this methodology systematically.

A Study of Methods on Risk Assessment for Plant Construction using FMEA(Failure Mode and Effect Analysis) (FMEA를 활용한 플랜트공사 위험성평가 방안)

  • Kim, Ho Min;Woo, In Sung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.81-90
    • /
    • 2013
  • To meet increased demand and lead to execution of successful overseas's plant construction, A prompt System is urgently needed to carries prevention and control of hazards associated with work related tasks and activities. This study is aimed to develop efficient and reliable safety management program to identify control measures for high risk activities by choosing and conducting proper risk assessment methodology that addresses Risk Priority Number(RPN) of adverse effects.

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

Concept of an intelligent operator support system for initial emergency responses in nuclear power plants

  • Kang, Jung Sung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2453-2466
    • /
    • 2022
  • Nuclear power plant operators in the main control room are exposed to stressful conditions in emergency situations as immediate and appropriate mitigations are required. While emergency operating procedures (EOPs) provide operators with the appropriate tasks and diagnostic guidelines, EOPs have static properties that make it difficult to reflect the dynamic changes of the plant. Due to this static nature, operator workloads increase because unrelated information must be screened out and numerous displays must be checked to obtain the plant status. Generally, excessive workloads should be reduced because they can lead to human errors that may adversely affect nuclear power plant safety. This paper presents a framework for an operator support system that can substitute the initial responses of the EOPs, or in other words the immediate actions and diagnostic procedures, in the early stages of an emergency. The system assists operators in emergency operations as follows: performing the monitoring tasks in parallel, identifying current risk and latent risk causality, diagnosing the accident, and displaying all information intuitively with a master logic diagram. The risk causalities are analyzed with a functional modeling methodology called multilevel flow modeling. This system is expected to reduce workloads and the time for performing initial emergency response procedures.

Quantitative Microbial Risk Assessment of Clostridium perfringens on Ham and Sausage Products in Korea (햄 및 소시지류에서의 Clostridium perfringens에 대한 정량적 미생물 위해평가)

  • Ko, Eun-Kyung;Moon, Jin-San;Wee, Sung-Hwan;Bahk, Gyung-Jin
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.118-124
    • /
    • 2012
  • This study was conducted for quantitative microbial risk assessment (QMRA) of Clostridium perfringens with consumption on ham and sausage products in Korea, according to Codex guidelines. Frame-work model as product-retail-consumption pathway composed with initial contamination level, the time and temperature in distributions, and consumption data sets for ham and sausage products and also used the published predictive growth and dose-response models for Cl. perfringens. The simulation model and formulas with Microsoft@ Excel spreadsheet program using these data sets was developed and simulated with @RISK. The probability of foodborne disease by Cl. perfringens with consumption of the ham and sausage products per person per day was estimated as $3.97{\times}10^{-11}{\pm}1.80{\times}10^{-9}$. There were also noted that limitations in this study and suggestion for development of QMRA in the future in Korea.