• Title/Summary/Keyword: Plant nutrient

Search Result 1,374, Processing Time 0.022 seconds

Ice-Nucleation Activity of Pseudomonas syringae Isolated in Korea (한국에서 분리한 Pseudomonas syringae의 빙핵활성)

  • Kim Yong Hwan;Kim Young Cheol;Cho Baik Ho;Kim Ki Chung
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.180-186
    • /
    • 1987
  • Cell suspensions of two isolates of Pseudomonas syringae. PS8401 from sweet persimon and PS8402 from tea plant, were active in ice nucleation at -2.5 and $-3.8^{\circ}C$, respectively. Ice nucleation at those temperature was, using micropipette method, detected in suspensions ($10^8$ olony forming unit/ml of distilled water) of cells that had been grown on nutrient agar supplemented with $2.5\%$ glycerol. Using the same method, on the other hand, the freezing temperature of distilled water only was approx. $-21.8^{\circ}C$, and those of various plant saps including corn were lower than $-11.6^{\circ}C$. Corn seedlings sprayed with cell suspensions $(10^8\;cfu/ml)$ of nutrient broth) of PS8401 began to be damaged at $-2^{\circ}C$ and were almost completely damaged at $-4^{\circ}C$, whereas seedlings sprayed with nutrient broth only were not injured until the temperature down to $-9^{\circ}C$. Amounts of frost damage measured 48 hr after application of PS8401 suspensions increased as applied bacterial cell densities were increased. Ice-nucleation activity of the cell suspensions in vitro increased with increasing the number of cells in suspension. The activity also affected by growth-medium composition or growth-temperature. Ice nucleation thus occured at -4.0, -4.4 and $-7.2^{\circ}C$ in suspensions $(10^2\;cfu/ml)$ of PS8401 that had been grown at$25\%$ nutrient agar with $2.5\%$ glycerol, nutrient agar with $2.5\%$ glucose and nutrient agar only, respectively, and occured at -4.0 and $-7.6^{\circ}C$ in suspensions $(10^2\;cfu/ml)$ of PS8401 hat had been grown on nutrient agar with $2.5\%$ glycerol at $15\~25^{\circ}C$ and $30^{\circ}C$, respectively.

  • PDF

Influence of Nutrient Supply on Growth, Mineral Nutrients and Carbohydrates in Cucumber (Cucumis sativus L.) (무기영양액 농도 차이가 오이 생육, 무기성분 흡수 및 탄수화물 합성에 미치는 영향)

  • Sung, Jwa-Kyung;Park, Sung-Yong;Lee, Su-Yeon;Lee, Ye-Jin;Lee, Ju-Young;Jang, Byong-Choon;Goh, Hyun-Gwan;Ok, Yong-Sik;Kim, Tae-Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • We investigated the growth of cucumber plants, the uptake and use of mineral nutrients, such as $NO_3$-N, $NH_4$-N, $K^+$, $Ca^{+}^{+}$, $Mg^{+}^{+}$ and $Na^+$, absorbed from media solution, and the synthesis and distribution of soluble sugars under nutrient-deficient condition. Difference in plant growth revealed after 20 days of treatment. Nitrate uptake in nutrient-deficient condition was significantly reduced compared with nutrient-normal treatment, and its distribution was primarily in petioles, stem, roots and less in leaves. In contrast, ammonium content was markedly predominated in fast growing organs, and it was significantly different in growing leaves, expanded leaves, and roots under similar growth conditions. $K^+$, lack by deficient nutrient condition, was found in growing leaves. The $Ca^{+}^{+}$ content did not show significant difference between treatments and a substantial portion of $Ca^{+}^{+}$ remained in petioles. The $Mg^{+}^{+}$ content was significantly higher in the leaves of nutrient-normal condition compared with nutrient-deficient condition while significantly lower in stem and roots. The behavior of $Na^+$ in plant was similar to $K^+$ although its content was relatively little. The highest $CO_2$ assimilation was observed in fully expanded leaves of nutrient-normal condition, which was 1.7 times higher compared with nutrient-deficient condition. The instantaneous water use efficiency (A/E) and the A/gsratio, which is an index of leaf intrinsic water use efficiency for individual leaves, was 1.2 and 1.1 times higher, respectively. The total soluble sugar (TSS) contents were highest in leaves followed by petioles, stems and roots, and in younger leaves. The growing leaves contained about 7,200 mg $kg^{-1}$ of TSS in nutrient-normal condition whereas the TSS contents in nutrient-deficient condition were not significantly different between leaves. The $Mg^{+}^{+}$ and $NH_4$- N were positively correlated with the TSS whereas $NO_3$ - N was negatively correlated.

The Role of Quantitative Traits of Leaf Litter on Decomposition and Nutrient Cycling of the Forest Ecosystems

  • Rahman, Mohammed Mahabubur;Tsukamoto, Jiro;Tokumoto, Yuji;Shuvo, Md. Ashikur Rahman
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.38-48
    • /
    • 2013
  • Decomposition of plant material is an important component in the study of forest ecosystem because of its critical role in nutrient cycling. Different tree species has different nutrient release patterns, which are related to leaf litter quantitative traits and seasonal environmental factors. The quantitative traits of leaf litter are important predictors of decomposition and decomposition rates increase with greater nutrient availability in the forest ecosystems. At the ecosystem level, litter quantitative traits are most often related to the physical and chemical characteristics of the litter, for example, leaf toughness and leaf mass per unit area, and lignin content tannin and total phenolics. Thus, the analysis of litter quantitative traits and decomposition are highly important for the understanding of nutrient cycling in forest ecosystems. By studying the role of litter quantitative traits on decomposition and nutrient cycling in forest ecosystems will provide a valuable insight to how quantitative traits influence ecosystem nutrient dynamics. Such knowledge will contribute to future forest management and conservation practices.

Growth Responses of Potted Gerbera 'Sunny Lemon' under Non-Nutrient Solution Recycling System by Media and Nutrient Contents (비순환식 분화 양액재배시 배지와 양액함량에 따른 거베라 'Sunny Lemon'의 생육반응)

  • Kil, Mi-Jung;Shim, Myung-Sun;Park, Sang-Kun;Shin, Hak-Gi;Jung, Jae-A;Kwon, Young-Soon
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • To investigate the characteristics of plant growth and flower quality of gerbera 'Sunny Lemon' by amount of nutrient solution, young seedling plants, 'Sunny Lemon' were transplanted to rock-wool and medium of peat moss and perlite mixed with 1 to 2 and they were acclimatized in greenhouse during about 1 month. Nutrient solution supplied to the plants is sonneveld solution of 1/2 concentration and treatments launched June 24, 2010 when average plant height was $20{\pm}1cm$. Nutrient contents as a standard for starting point of irrigation by time domain reflectometry (TDR) were determined with 60-65%, 70-75%, and 80-85%. Results of growth during vegetative growth, plant height, leaf width and leaf number increased by 10% in rockwool, but they were not significantly different. As for plant growth depending on nutrient content, 80-85% treatment showed the highest values. Leaf number increased by 60%, and leaf width and plant height had a about 40% increase than initial growth. Effectiveness for flower quality, yield and days to flowering were superior when nutrient content of media was higher than in the others. Especially, average days to flowering in 80-85% content was advanced by 7-10 days compared to the day in 60-65% treatment. The total amount of nutrient supply per plant was higher in mixed medium than in rockwool, but change patterns of EC and pH were enhanced in rockwool. Based on our results, we recommended that growth, cut flower, and yield of gerbera 'Sunny Lemon' were more effective when nutrient content of mixed medium was maintained at 80-85%.

Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review

  • Giweta, Mekonnen
    • Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.81-89
    • /
    • 2020
  • In the forest ecosystems, litterfall is an important component of the nutrient cycle that regulates the accumulation of soil organic matter (SOM), the input and output of the nutrients, nutrient replenishment, biodiversity conservation, and other ecosystem functions. Therefore, a profound understanding of the major processes (litterfall production and its decomposition rate) in the cycle is vital for sustainable forest management (SFM). Despite these facts, there is still a limited knowledge in tropical forest ecosystems, and further researches are highly needed. This shortfall of research-based knowledge, especially in tropical forest ecosystems, may be a contributing factor to the lack of understanding of the role of plant litter in the forest ecosystem function for sustainable forest management, particularly in the tropical forest landscapes. Therefore, in this paper, I review the role of plant litter in tropical forest ecosystems with the aims of assessing the importance of plant litter in forest ecosystems for the biogeochemical cycle. Then, the major factors that affect the plant litter production and decomposition were identified, which could direct and contribute to future research. The small set of studies reviewed in this paper demonstrated the potential of plant litter to improve the biogeochemical cycle and nutrients in the forest ecosystems. However, further researches are needed particularly on the effect of species, forest structures, seasons, and climate factors on the plant litter production and decomposition in various types of forest ecosystems.

Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables

  • Jun-Yeong Lee;Yun-Gu Kang;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.967-976
    • /
    • 2023
  • Biochar is emerging as a promising substance for achieving carbon neutrality and climate change mitigation. It can absorb several nutrients via ion bonding on its surface functional groups, resulting in slow dissociation of the bonds. Biochar, like organic fertilizers, contributes to sustainable nutrient management. The purpose of this study was to investigate the effects of nutrient-coated biochar amendments on leafy vegetables production and soil fertility. The nutrient-coated biochar was produced by soaking rice husk biochar in a nutrient solution containing nitrogen (N), phosphorus, and potassium for 24 hours. Nutrient-coated biochar and organic fertilizers were applied to soil at a rate of 120 kg·N·ha-1. The growth components of the leafy vegetables showed that nutrient-coated biochar led to the highest fresh weight (FW) of both lettuce and kale (i.e., 146.67 and 93.54 g·plant-1 FW, respectively). As a result, nutrient-coated biochar amendments led to superior yield compared to the control treatment and organic fertilization. The elemental composition of leafy vegetables revealed that soil amended with nutrient-coated biochar resulted in higher nutrient contents, which was attributed to the high nutrient contents supplied by the rice husk biochar. Soil amendment with nutrient-coated biochar positively enhanced the soil fertility compared to amendment with organic fertilizer. Therefore, nutrient-coated biochar is a promising substance for enhancing agronomic performance of leafy vegetables and improving soil fertility.

Feeding Behaviour and Forage Nutrient Utilization by Goats on a Semi-Arid Reconstituted Silvipasture

  • Sharma, K.;Saini, A.L.;Singh, Nawab;Ogra, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.344-350
    • /
    • 1998
  • Seasonal variations in the feeding behaviour of Jamunapari and Barbari goat breeds and their utilization of browse and grass nutrients was evaluated in a promising 3-tier (Leucaena leucocephala- Dichro-stachys nutan-Cenchrus ciliaris) reconstituted pasture during summer, rainy and winter season of the years 1987 and 1988. Distinct diurnal pattern of feeding was observed with both the breeds. Jamunapari goats spent significantly more time foraging during winter season (352.0 min) followed by summer (306.0 min) and least in rainy season (277.0 min). Though no significant difference was observed in the relative time spent by Barbari goats on grazing activities during summer and winter season, they spent significantly more (p < 0.05) time during rainy season as compared to other two seasons. The preference of grazing goats for certain plant species in relation to others was evident with distinct seasonal and breed variations. DM intake (g/kg $BW^{075}$) varied significantly (p < 0.05) from season to season. Among the browse. L. leucocephala was prefered over D. nutan irrespective of breed over the seasons. There was no breed difference in DM intake, or proximate composition and nutrient digestibility of ingested herbage. The available nutrient content of ingested forage was found sufficient to meet the nutrient requirements of adult goats for maintenance (NRC, 1981). The reconstituted 3-tier pasture dominated by plant species like L. leucocephala and Cenchrus species appear to have great potential to sustain the nutrient requirement of goats without adverse seasonal fluctuations in pasture quality.

Nutrient dynamics in decomposing litter from four selected tree species in Makurdi, Benue State, Nigeria

  • Okoh, Thomas;Edu, Esther
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.376-384
    • /
    • 2019
  • Background: Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e-kd t, while $Kd=-{\frac{1}{t}}In({\frac{Wt}{W0}})$ was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as $NAI=(\frac{{\omega}t\;Xt}{{\omega}oXo})$. Results: Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion: Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.

Effect of EC and pH of Nutrient Solution on the Growth and Quality of Single-Stemmed Rose in Cutted Rose Production Factory (절화장미 수경재배시 배양액의 농도와 pH가 생육과 품질에 미치는 영향)

  • Lee Hye Jin;Yang Eun-Young;Park Keum-Soon;Lee Yong-Beom;Bae Jong Hyang;Jeon Kyung Soo
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.258-265
    • /
    • 2004
  • The experiment was conducted to investigate the effect of EC and pH of nutrient solution on the growth and quality of the single-stemmed rose grown in a rose factory installed with hydroponic system. The growth and quality of the single-stemmed rose were not significantly different from each other with the EC of the nutrient solutions $1.0\~3.5dS{\cdot}m^{-1}$, which resulted in concluding high concentration of the nutrient solution was not necessary. The optimum range of the EC for single-stemmed rose was $1.5\~2.0dS{\cdot}m^{-1}$ considering plant growth, photosynthetic and transpiration rates. The optimum range of the pH for good plant growth without any visible physiological disorder was $4.0\~6.0$. Therefore, to keep the pH of the nutrient solution for rose low compared to other plants was beneficial for plant growth and uptake of the mineral ions.