• Title/Summary/Keyword: Plant modeling

Search Result 897, Processing Time 0.034 seconds

Development of Standard Activity Model for Small and Medium sized Plant: Focused on Detailed Design Phase (중소형 플랜트의 표준화된 플랜트 엔지니어링 활동 모델 개발: 상세설계를 중심으로)

  • Shin, Jung Uk;Yeom, Choong Sub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • Plant Engineering is a series of activities going through following life cycle phases: planning, basic design, detailed design, procurement and construction, commissioning, operation and maintenance, to produce a target product. From among these phases of plant engineering life cycle, a detailed design phase is an important phase producing final design deliveries. Luckily, through technical co-operation and experiences of constructing plants, large Korean engineering companies have accumulated know-hows of efficient detailed designs. However, smaller engineering companies have less experience of performing detailed designs so there is always a risk of causing design errors in the detailed design phase. To mitigate the risk of design errors in the detailed design phase, it is necessary to systematize a concrete activity model of a detailed design phase. In this paper, we have developed a prototype of a detailed design activity model through a widely used function modeling methodology called IDEF0.

The Impact of Climate Change on the Dynamics of Soil Water and Plant Water Stress (토양수분과 식생 스트레스 동역학에 기후변화가 미치는 영향)

  • Han, Su-Hee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.52-56
    • /
    • 2009
  • In this study a dynamic modeling scheme is presented to derive the probabilistic structure of soil water and plant water stress when subject to stochastic precipitation conditions. The newly developed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress is investigated under climate change scenarios. This model is based on the cumulant expansion theory, and has the advantage of providing the probabilistic solution in the form of probability distribution function (PDF), from which one can obtain the ensemble average behavior of the dynamics. The simulation result of soil water confirms that the proposed soil water model can properly reproduce the results obtained from observations, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. The plant water stress simulation, also, shows two different PDF patterns according to the precipitation. Moreover, with all the simulation results with climate change scenarios, it can be concluded that the future soil water and plant water stress dynamics will differently behave with different climate change scenarios.

  • PDF

A Study on Improvement of Architectural Design Process on the Interface in Designing of Power Plant (발전플랜트 설계 인터페이스 중심의 건축설계절차 개선에 관한 연구)

  • Lee, Gang-Ok;Kim, Da-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • The cooperation with other work types and designing procedure in plant industry and engineering showed clear differences from general construction industries. Current problems are that design's consistency is reduced because of the false system of interface and it ultimately causes frequency changes of design and delayed submission of final book. To solve the problems, the improvements of designing procedure were studied by focusing on the field of architectural designing and the range was limited from power plant construction industry to engineering designing field. If combining GA with the field of architectural designing and receiving data previously, it's possible to conduct expectable designing on small changes in the future, so it's expected to improve greatly cooperation with interface among the work types of power plant engineering received previously from the aspect of consistency. For the application of designing tool, a checklist, interim check will be conducted if progressed by list's division in the designing procedure, not book's completing period. In the interface among the designing work types, direct confirmation and revision must be conducted. In case of 3D modeling, the reflection of input data must be conducted from the basic designing so as to solve interferences intensively.

As-built modeling of piping system from terrestrial laser-scanned point clouds using normal-based region growing

  • Kawashima, Kazuaki;Kanai, Satoshi;Date, Hiroaki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-26
    • /
    • 2014
  • Recently, renovations of plant equipment have been more frequent because of the shortened lifespans of the products, and as-built models from large-scale laser-scanned data is expected to streamline rebuilding processes. However, the laser-scanned data of an existing plant has an enormous amount of points, captures intricate objects, and includes a high noise level, so the manual reconstruction of a 3D model is very time-consuming and costly. Among plant equipment, piping systems account for the greatest proportion. Therefore, the purpose of this research was to propose an algorithm which could automatically recognize a piping system from the terrestrial laser-scanned data of plant equipment. The straight portion of pipes, connecting parts, and connection relationship of the piping system can be recognized in this algorithm. Normal-based region growing and cylinder surface fitting can extract all possible locations of pipes, including straight pipes, elbows, and junctions. Tracing the axes of a piping system enables the recognition of the positions of these elements and their connection relationship. Using only point clouds, the recognition algorithm can be performed in a fully automatic way. The algorithm was applied to large-scale scanned data of an oil rig and a chemical plant. Recognition rates of about 86%, 88%, and 71% were achieved straight pipes, elbows, and junctions, respectively.

Optimization of Ammonia Decomposition and Hydrogen Purification Process Focusing on Ammonia Decomposition Rate (암모니아 반응기의 분해 효율 최적화를 통한 암모니아 분해 및 수소 정제 공정 모델 연구)

  • DAEMYEONG CHO;JONGHWA PARK;DONSANG YU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.594-600
    • /
    • 2023
  • In this study, a process model and optimization design direction for a hydrogen production plant through ammonia decomposition are presented. If the reactor decomposition rate is designed to approach 100%, the amount of catalyst increases and the devices that make up the entire system also have a large design capacity. However, if the characteristics of the hydrogen regeneration process are reflected in the design of the reactor, it becomes possible to satisfy the total flow rate of fuel gas with the discharged tail gas flow rate. Analyzing the plant process simulation results, it was confirmed that when an appropriate decomposition rate is maintained in the reactor, the phenomenon of excess or shortage of fuel gas disappears. In addition, it became possible to reduce the amount of catalyst required and design the optimized capacity of the relevant processes.

Steady and Dynamic Modeling of 3MW MCFC System Conceptual Design Using Parameter Interpolation Method (파라미터 보간법을 이용한 3MW급 MCFC 시스템의 정상 및 비정상 상태 설계)

  • Kim, Minki;Cho, Yinjung;Kim, Yunmi;Kang, Minkwan;Lee, Sanghoon;Kim, Jaesig
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.87.2-87.2
    • /
    • 2010
  • The steady and dynamic process model for an internal reforming molten carbonate fuel cell power plant is discussed in this paper. The dominant thermal and chemical dynamic processes are modeled for the stack module and balance-of-plant, including cathode gas preparation, heat recovery, heat loss (Each heat loss amount for the stack and MBOP is obtained from real plant data) and fuel processing. Based on dynamic model and control demand, PID controllers are designed in the whole system. By applying these controllers we can obtain temperature balance of stack and control system depending on changing steam to carbon ratio, air feed amount, and transient condition.

  • PDF

DCS Model Calculation for Steam Temperature System

  • Hwang, Jae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1201-1204
    • /
    • 2004
  • This paper suggests a DCS (Distributed Control System) model for steam temperature system of the thermal power plant. The model calculated within sectional range is linear. In order to calculate mathematical models, the system is partitioned into two or three sectors according to its thermal conditions, that is, saturated water/steam and superheating state. It is divided into three sections; water supply, steam generation and steam heating loop. The steam heating loop is called 'superheater' or steam temperature system. Water spray supply is the control input. A first order linear model is extracted. For linear approach, sectional linearization is achieved. Modeling methodology is a decomposition-synthetic technique. Superheater is composed of several tube-blocks. For this block, linear input-output model is to be calculated. Each tiny model has its transfer function. By expanding these block models to total system, synthetic DCS linear models are derived. Control instrument include/exclude models are also considered. The resultant models include thermal combustion conditions, and applicable to practical plant engineering field.

  • PDF

Modeling for Twin Rotor System Using CLID (폐로식별기법에 의한 TRMS 모델링)

  • Lee, Jung-Kyung;Kwon, Oh-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.644-646
    • /
    • 2004
  • The closed loop identification(CLID) is a very useful method for on-line applications since it can identify the plant in the closed-loop system composed of the plant and the controller. There are some literatures on CLID, but they and mainly focused on SISO(Single-Input/Single-Output) problem. In this paper, a CLID method is proposed for MIMO(Multi-Input/Multi-Output) systems. The CLID method is applied to a MIMO benchmark plant, TRMS(Twin-Rotor MIMO System). To illustrate the performance of the closed-loop system identification., unit step responses in the TRMS are represented and compared with the open-loop identification via some simulation.

  • PDF

A robust controller design for attitude control of hovering vehicle (수직부상기의 자세제어를 위한 강인한 제어기의 설계)

  • 최연욱;이형기
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.41-49
    • /
    • 1997
  • This paper deals with the attitude control of a self-made VTOL vehicle which is round shape and has four fans and motors. Although hovering mechanisms are suitable for field work at a mountainous region or a building site etc., it is known that modeling the structure of the plant is quite difficult due to its unstable or uncertain characteristics. So, a robust controller is requried in order to cope with these uncertainties. WE first model the structure of the plant under the actual hovering setting and then determine the uncertainty of the acquired mathematical model by using system identification method as exactly as possible. We adopt the $H^{\infty}$ theory as a control algorithm because of its availability, and the structure of two-degree-of-freedom is used as a basic feedback control system to improve the transient response of the plant. Finally, we show the appropriateness of the designed controller through simulations and experiments. That is, the proposed VTOL system is able to maintain its roubust performance in spite of parameter variations and existing disturbances..

  • PDF

3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant (원전 주요기기의 3차원 피로수명 평가)

  • Ahn, Min-Yong;Bae, Sung-Ryul;Park, Young-Jae;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF