• 제목/요약/키워드: Plant hormones

검색결과 203건 처리시간 0.026초

분자농업의 현황 및 전망 (Current status in molecular farming)

  • 김태금;양문식
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.243-249
    • /
    • 2010
  • Molecular farming is production of pharmaceutically and industrially important proteins in plants. Plants and plant cell culture systems have been used as bio-factory to produce recombinant proteins such as monoclonal antibodies, enzymes, vaccines, hormones, interleukins, commercial enzymes and etc. The terms molecular farming, biofarming, molecular pharming, phytomanufacturing, recombinant or plant-made industrials, planta-pharma, plant bioreactors, plant biofactory, and pharmaceutical gardening are used interchangeably. Molecular farming can provide safe and inexpensive pharmaceutical proteins as well as commercial ones. In spite of several advantages of molecular farming such as safety and inexpensive cost, there are also a couple of drawbacks in the existing technology. One of them is low expression level of target gene in plants, which has been improved by optimizing gene-based codon usage, screening of strong promoters, expression of transcription factors, subcellular targeting of target proteins, chloroplast transformation, and transient expression using viral expression system (magnifection). Some plant-based commercial proteins have already been in markets and more than twenty plant-based pharmaceuticals have been in clinical trials, from that we can expect that several plant-based pharmaceutical proteins will be seen in the markets in the near future.

Distinctive response of maize (Zea mays L.) genotypes in vitro with the acceleration of phytohormones

  • Muppala, Sridevi;Gudlavalleti, Pavan Kumar;Pagidoju, Sreenu;Malireddy, Kodandarami Reddy;Puligandla, Sateesh Kumar;Dasari, Premalatha
    • Journal of Plant Biotechnology
    • /
    • 제47권1호
    • /
    • pp.26-39
    • /
    • 2020
  • In maize, immature embryos (IEs) are highly regenerative explants most suitable for producing high frequencies of plantlet regeneration in vitro. Apart from media, explants, and hormones, genotypic variation also influences in vitro characters to a great extent. In the present study, IEs were used to study the distinctive effect of variation of size/stage and hormones in different genotypes on five in vitro characters viz., frequency of callus induction, growth rate of total callus, frequency of E. callus induction, and volume and number of regenerated plantlets. LS medium with different concentrations of 2,4-D (0.5, 1.5, 2.5, 4.0 and 5.0 mg/L) were used to study the former four in vitro characters, and medium with 6-benzylaminopurine and kinetin (0.5 mg/L, each) was used for plantlet regeneration. IEs of 1.0, 1.5, 2.0, 2.5 and 3.0 mm in size were isolated from four inbred lines viz., NM74C, NM81A, NM5883 and NM5884. Two-way ANOVA revealed that explant size and genotypes, as well as hormonal concentrations showed significant effects on in vitro characters. Two millimeter IEs were found to be suitable for in vitro cultures. LS medium with 1.5 mg/L 2,4-D and LS with BAP and Kn (0.5 mg/L, each) were found to be the best hormonal concentrations for callus induction, maintenance, and regeneration, respectively. Among the four genotypes, NM81A and NM5883 yielded more non-embryogenic and Type I E. calli. In contrast, NM74C and NM5884 yielded more highly regenerative Type II calli. Inbred line NM5884 was found to be the best among these four genotypes.

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

Tolerance to Salt Stress by Plant Growth-Promoting Rhizobacteria on Brassica rapa var. glabra

  • Hussein, Khalid A.;Yoo, Jaehong;Joo, Jin Ho
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.776-782
    • /
    • 2016
  • Salinity has been a threat to agriculture in some parts of the world; and recently, the threat has grown. Plant growth-promoting rhizobacteria (PGPR) may benefit plant growth, either by improving plant nutrition or producing plant growth hormones. The effects of rhizobacterial strains to attenuate the salinity stress on the germination of Chinese cabbage seeds were tested using four different concentrations of NaCl (50, 100, 150, and 200 mM). Also, PGPR strains were tested to enhance the early germination of Chinese cabbage seeds under normal conditions. Azotobacter chroococcum performed best with enhancing the radicle length of 4.0, 1.2, and 1.0 times at treatments of 50, 100, and 150 mM of NaCl, respectively. Additionally, significant differences were found in plumule length, A. chroococcum and Lactobacillus sp. showed remarkable activation either in normal or under stress conditions. Co-inoculation by three rhizobacterial strains (LAPmix) indicated synergistic effect to enhance the early germination of the seeds. The results of this study are promising for application of rhizobacterial strains that possess plant growth promoting traits to enhance the plant tolerance against salinity.

Effects of Precursor and Thidiazuron on Triterpene Saponin Biosynthesis in Centella asiatica (L.) Urban

  • Kim, Ok-Tae;Kim, Min-Young;Ahn, Jun-Cheul;Li, Mei-Yang;Hwang, Baik
    • 한국약용작물학회지
    • /
    • 제13권2호
    • /
    • pp.91-94
    • /
    • 2005
  • Plants have been known to accumulate a very diverse range of triterpene saponins. We have investigated the regulation of saponin biosynthesis in higher plants using Centella asiatica (L.) Urban as a model plant. Effects of a feeding precursor on asiaticoside production from leaves and on the level of two-type OSCs mRNA were investigated. As a feeding precursor, squalene negatively affected the levels of CYS and bAS mRNA, but it also decreased the production of asiaticoside from whole plants. Plant hormones regulate secondary metabolism, and in plant tissue cultures they could affect both culture growth and secondary metabolite production. Although enhancement of asiaticoside production from whole plant cultures by addition of TDZ (thidiazuron) has been reported, the positive effect of TDZ on the levels of OSCs transcripts was not observed.

Inhibitors Targeting ABA Biosynthesis and Catabolism Can Be Used to Accurately Discriminate between Haploid and Diploid Maize Kernels during Germination

  • Kwak, Jun Soo;Kim, Sung-Il;Song, Jong Tae;Ryu, Si Wan;Seo, Hak Soo
    • Plant Breeding and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.204-212
    • /
    • 2017
  • There is a growing preference for using doubled haploids (DHs) in maize breeding programs because they reduce the time required to generate and evaluate new lines to 2 years or less. However, there is an urgent need for efficient techniques that accurately discriminate between haploid and diploid maize kernels. Here, we investigate the effects of several hormones and chemicals on the germination of haploid and diploid maize kernels, including auxin, cytokinin, ethylene, abscisic acid (ABA) biosynthesis inhibitor (fluridone), ABA catabolism inhibitor (diniconazole), methyl jasmonate (MeJA), and NaCl. Ethylene effectively stimulated the germination of both haploid and diploid maize kernels. The ABA biosynthesis inhibitor fluridone, the ABA catabolism inhibitor diniconazole, and MeJA selectively stimulated the germination of haploid maize kernels. By contrast, gibberellin, 1-naphthaleneacetic acid (NAA), kinetin, and NaCl inhibited the germination of both haploid and diploid maize kernels. These results indicate that the germination of haploid maize kernels is selectively stimulated by fluridone and diniconazole, and suggest that ABA-mediated germination of haploid maize kernels differs from that of diploid maize kernels and other plant seeds.

Methyl Jasmonate-mediated Enhancement of Phenylethanoid Glycoside in Callus from Abeliophyllum distichum (cultivar Okhwang1)

  • Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.53-53
    • /
    • 2023
  • Abeliophyllum distichum, one of the Korean endemic plant, is a significant pharmaceutical plant resource. A. distichum with phenylethanoid glycoside can use to regulate the development of cancer, DNA damage with radicals, and the generation of inflammatory mediators. In this study, we investigated whether the biomass, content of phenylethanoid glycoside, and growth rate of callus derived from A. distichum (cultivar Okhwang1, CAD) change in the absence or presence of plant hormones (2,4-Dichlorophenoxyacetic acid; 2, 4-D and 1-Naphthaleneacetic acid; NAA). The results showed that the best biomass, the growth rate of callus, and the contents of phenylethanoid glycoside were cultivated on Murashige and Skoog (MS) growth medium fortified with 1 ppm 2,4-D + 2 ppm NAA after 4 weeks. In a further study, CAD was cultivated on MS growth medium fortified with an elicitor (Methyl Jasmonate, MeJA). The results showed that CAD turned to brown color and fragile form with the elicitor. HPLC-PDA analysis revealed that the contents of phenylethanoid glycoside in the elicitor-treated group were higher than in the elicitor-non-treated group. These results are consistent with the findings of Arano-Varela H et al.,'s study which is that acteoside production can increase after the treatment of MeJA. Therefore, this study can be used to develop an effective and sustainable production of useful substances as an alternative to plant cultivation.

  • PDF

옥수수 중배축으로부터 분리한 원형질체에서 IAA와 Aeatin에 의한 세포질 $Ca^{2+}$ 노도의 변화 (Changes of Cytosolic $Ca^{2+}$ by IAA and Zeatin in Protoplasts Isolated from Maize Mesocotyl)

  • 송재진
    • Journal of Plant Biology
    • /
    • 제34권3호
    • /
    • pp.239-244
    • /
    • 1991
  • Ca2+ is implicated as a second messenger in coupling various stimuli such as hormone, gravity and light. The determine whether or not plant hormones mobilize calcium with different action, we investigated the cytosolic Ca2+ changes by IAA and zeatin in the protoplasts isolated from elongating mesocotyl of maize. IAA increased the influx of Ca2+ due to the calcium channel opening, which was confirmed by using verapamil, calcium channel blocker. On the other hand, zeatin increased the cytosolic Ca2+ by promoting the efflux of Ca2+ derived from cellular organelles. These results suggest that different calcium flux induced by IAA and zeatin plays a role in appropriate response resulting in increase of cell elongation or repression cell elongatoin.

  • PDF

식물생장물질의 토양관주와 엽면살포가 뽕나무의 발근에 미치는 영향 (Effect of Pour Into Soil and Spray on Leaves of Plant Growth Substances on the Root Out of Mulberry)

  • 김문협
    • 한국잠사곤충학회지
    • /
    • 제20권1호
    • /
    • pp.1-4
    • /
    • 1978
  • The root-out of mulberry saplings has been studied by pour into soil and spray on leaves of the plant growth substances. In addition, the effect of "Rutin", a kind of plant growth hormones has been also studied on promoting the rootability of mulberry scions by dipping the scions at the various concentrations. The results are summarized as follows: (1) It is likely to be effective on acceleration of the rootability resulting in increase of rooting ratio by pour into soil at the concentration of 1 ppm and 10 ppm NAA, 10 ppm and 100 ppm Rutin, and 5000 fold solution of Atonic, respectively (2) Growth of branch is only promoted by leaf spray of 0.5% urea, 0.005% and 0.01% Rutin, and 5000 fold solution of Atonic without increasing the root weight. (3) It seems that 0.05% of Rutin is of practical use, and 0.05% to 0.4% of "Rutin" accelerates the root-out of mulberry scions as well as NAA does.

  • PDF

식물 호르몬에 의한 옥수수 rbcL mRNA의 양적 변화 (Quantitative Change in rbcL mRNA of Maize by Phytohormones)

  • 이영진
    • Journal of Plant Biology
    • /
    • 제36권3호
    • /
    • pp.203-210
    • /
    • 1993
  • In order to investigate the effects of plant hormones on the quantitative changes in mRNA of maize (Zea mays L.) rbcL, we used GA3, IAA, ABA and BAP. GA3 at the concentration of 10-4M resulted in decrease in rbcL gene transcript to 62%. IAA decreased the amount of rbcL transcript to about 70% at all the hormone concentrations tested. ABA did not cause a noticeable change in the amount of rbcL transcript, but BAP increased the amount of rbcL transcript to 153% at 10-8M and 123% at 10-5M, respectively. Thus, it appears that BAP is related to the increase in the amount of rbcL transcript by light.

  • PDF