• 제목/요약/키워드: Plant hormones

검색결과 203건 처리시간 0.035초

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 추계학술대회
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 춘계학술대회
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • Journal of Plant Biotechnology
    • /
    • 제29권2호
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

Seed Germination and Dormancy Breaking of Thalictrum rochebrunianum var. grandisepalum (H. Lev.) Nakai

  • Cho, Ju Sung;Kwon, Hyuk Joon;Lee, Cheol Hee
    • 한국자원식물학회지
    • /
    • 제29권3호
    • /
    • pp.339-346
    • /
    • 2016
  • This study was carried out to develop an effective seed propagation method for Thalictrum rochebrunianum var. grandisepalum (H. Lev.) Nakai by analyzing seed dormancy types and germination characteristics. Seeds were collected between September to October at Gangwon province, and well-selected seeds were used while being dry-stored at 4±1℃. The seed size ranged 4.52 × 1.58 ㎜ and the weight of thousand seeds were 1,603.5 ± 0.02 ㎎. The moisture content was 7.2%. Seeds were achene type, and morphology characters showed an elliptical shape and rough texture, and light brown in color. Moist-chilling treatment was conducted for dormancy breaking because the seeds had an undeveloped embryo of liner type. The embryo had developed during a moist-chilling period, constantly, and fully developed in 10 weeks. Consequently, it seemed to be non-deep complex or intermediate complex type of morphophysiological dormancy, and embryo dormancy was broken by wet-chilling for 10 weeks. After 10 weeks of wet-chilling treatment, seed germination began. Germination percentage was higher in dark condition raher than light condition and recorded the maximum at 25℃ in the dark (16.3%). A pre-soaking treatment with a combined plant growth hormones promoted germination and shortened T50. Specifically, seed germination of 84.5% was achieved by pre-soaking of seeds with a combined solution of 500 ㎎/L GA3 and 10 ㎎/L kinetin for 24 h after a wet-chilling treatment for 10 weeks. Thus the effect of plant growth hormones coupled with chilling temperature on seed breaking dormancy provide asubsequent growth of seedlings for successful plantation.

코로나19 (COVID-19) 팬데믹에 대응하여 요구되는 여성호르몬이 강화된 캐나다산 식이 보충제의 동향 (Trends in Canadian Dietary Supplements Enhanced with Female Hormones Required in Response to the COVID-19 Pandemic)

  • 심윤영;뤠니 제이 티 마틴;이학성;김혜진
    • 급식외식위생학회지
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2022
  • As one of the post-COVID-19 response strategies, representative processed products derived from the natural plant material flaxseed and a dietary supplement fortified with female hormones (estrogens) were developed in Canada, an eco-friendly country was introduced. These products were: 1) flaxseed oil to help maintain cognitive and immune function, 2) Lignan50, a substance with effects similar to estrogen, a female hormone, 3) XanFlax, a thickener for confectionery/baking and egg substitute, 4) MediFlax, a constipation reliever, 5) SesaFlax, which has a fragrance similar to sesame, 6) Linusorb, which is effective for its pharmaceutical anti-inflammatory/anti-oxidation and anti-aging properties, and 7) LinuLyte, a water/electrolyte supplement containing high dietary fiber. It is expected that these dietary products will help maintain and promote health as part of a response to the COVID-19 pandemic.

Expression of Kip-related protein 4 gene (KRP4) in response to auxin and cytokinin during growth of Arabidopsis thalia

  • Cho, Hye-Jeong;Kwon, Hye-Kyoung;Wang, Myeong-Hyeon
    • BMB Reports
    • /
    • 제43권4호
    • /
    • pp.273-278
    • /
    • 2010
  • The cell cycle is regulated by cyclin-dependent kinase (CDK)-cyclin complexes as well as other regulators. We isolated Kip-related protein 4 (KRP4) cDNA that encodes 289 amino acids including six conserved domains. To investigate the expression pattern of KRP4 as well as of other cell cycle-related genes associated with plant hormones, Arabidopsis seedlings were cultured on MS medium containing auxin or cytokinin. All seedlings treated with phytohormones displayed an increased proportion of cells in S phase. A higher proportion of cells in G2 phase was observed in seedlings treated with NAA. RT-PCR confirmed that the expression of KRP4 was decreased after treatment with phytohormones, and that CDKA and D-type cyclin transcription was increased. Additionally, mitotic cyclins were up-regulated by NAA treatment. These results suggest that KRP4 as well as other cell cycle-related genes might contribute to the control of plant growth in response to exogenous hormones.

Effect of Plant Hormones on the Invertase Activity in the Senescing Leaves of Phaseolus radiatus

  • Lee, Dong-Hee;Lee, Chin-Bum;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권1호
    • /
    • pp.37-48
    • /
    • 1998
  • Effect of plant hormones on the leaf senescence of mung bean (Phaseolus radiatus) was investigated by measuring the changes of reducing sugar contents and invertase isozyme activities in detached leaves treated with NAA, $GA_3$ or BA. During dark-induced senescence, reducing sugar contents in the detached leaves increased temporarily at 4 d, thereafter decreased rapidly and reached minimum values within 7-14 d. The pattern of soluble acid invertase activity in the senescing leaves kept in the dark was similar to that of reducing sugar accumulation, whereas the activities of alkaline and extracellular invertases were not significantly changed during leaf senescence. Therefore, these results suggest that soluble acid invertase, but not alkaline and extracellular invertases, induces the accumulation of reducing sugar during leaf senescence of mung bean plants. Exogenous NAA application had little or no effect in the increase of soluble acid invertase activity during dark-induced senescence compared to the control. However, exogenous applications of $GA_3$ and BA led to the increase of soluble acid invertase activity in the senescing leaves. Particularly, BA application was very effective in enhancing the activity of soluble acid invertase as well as in delaying chlorophyll breakdown during dark-induced senescence. These results suggest, therefore, that BA regulates the activity of soluble acid invertase, which leads to the accumulation of reducing sugar, and the stability of photosynthetic apparatus to delay leaf senescence.

  • PDF

당근 배양세포의 생육에 미치는 수종 Hormone의 영향 (The Effects of Various Hormones on Growth of Carrot Tissue Culture)

  • 강영희
    • Journal of Plant Biology
    • /
    • 제20권2호
    • /
    • pp.63-69
    • /
    • 1977
  • Experiments were conducted to investigate the effects of several hormones on the growth of suspension culture of carrot (Daucus carota L.) cells, where changes in pH and the amount of $NH_4-Nin$ the medium were observed with regard to growth. A treatment with 2,4-D at $10^{-5}M$ resulted in a highest rate of growth; the hormone at this concentration caused an increase in dry weight by about 40 to 50% over the control, measured at a stationary phase. It was thus indicated that 2,4-D at $10^{-5}M$ provided the optimal condition for the suspension culture. Changes in pH of the medium were found to be affected by hormonal treatments during the first 2-3 days following the inoculation, after which the pattern of pH changes in hormone enriched media paralleled that of the control. Subsequent changes of $NH_4-N and NO_3-N$ from the medium by the cells, and also by growth of the cells. The uptake of $NH_4-N$ by the cells did not appear to be influenced by hormonal treatments. At a stationary phase, a considerable amout of $NO_3-N$ played a more important role than $NH_4-N$ in the growth of the carrot cell suspension culture.

  • PDF

Interaction of brassinosteroids and cytokinin in modulating light mediated signaling in Arabidopsis

  • Hwang, Indeok;Paudyal, Dilli P.;Cheong, Hyeonsook
    • 통합자연과학논문집
    • /
    • 제1권1호
    • /
    • pp.24-31
    • /
    • 2008
  • Brassinosteroids (BRs) are a special class of plant steroid hormones that are essential for normal growth and development. Part of confusion is whether BRs are unique to plants, because they have overlapping physiological roles with other better-studied hormones and with physiological responses caused by light. In systems designed to assay for cytokinins, the effects of BRs vary. We measured hypocotyl length for testing the ability of brassinolide (BL) to rescue double mutant between det2 and the photoreceptor null mutant phytochrome B (phyB). PHYB involved in controlling hypocotyl elongation in increased concentration of BL whereas phyBdet2 double mutant just partially rescue to phyB in white and red light indicated the involvement of BRs in PHYB regulated cell elongation. BRs regulated hypocotyl growth was delayed by BAP, a cytokinin treatment but inhibitory effects of BAPs on hypocotyl growth was slightly recovered by BL. The result indicated that the mode of action of BR and cytokinin is independent or sequential in the downstream light-regulated response control on hypocotyl elongation and also light modulated the action of BR and cytokinin in some extent.

  • PDF