• Title/Summary/Keyword: Plant food

Search Result 3,624, Processing Time 0.032 seconds

Comparison of NaCl and D-Pinitol Content of Freeze-Dried Ice Plant, Natural and Purified Commercial Salts and their Radical Scavenging Activity

  • Sim, Wan-Sup;Park, Sung-Ho;Choi, Sun-Il;Cho, Bong-Yeon;Choi, Seung-Hyun;Han, Xionggao;Jang, Gill-Woong;Kwon, Hee-Yeon;Choi, Ye-Eun;Men, Xiao;Yoon, Sangjin;Kim, Young-Jun;Cho, Ju-Hyun;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.595-600
    • /
    • 2019
  • This study investigated the suitability of freeze-dried ice plant (Mesembryanthemum crystallinum) as the source of an edible healthy salt alternative by examining the content of NaCl, D-pinitol, total phenols, total flavonoids, and DPPH radical scavenging activity compared with those of natural and purified salts. Our results showed that the NaCl content of freeze-dried ice plant, natural and purified salts was 19, 94 and 99%, respectively. The D-pinitol content of freeze-dried ice plant was 777 mg/100 g, whereas D-pinitol was not detected in either natural or purified salts. The total phenol and flavonoid contents of freeze-dried ice plant were 115 mg GAE/100 g and 985 mg RE/100 g, respectively. The DPPH radical scavenging activity of freeze-dried ice plant was markedly higher than that of natural and purified salts. Altogether, these results show that freeze-dried ice plant contains both NaCl and bioactive compounds and can be used as a source of edible salt with positive health effects.

Survey and Screening of Fungicide for the Control of Tomato Black Leaf Mold Pseudocercospora fuligena

  • Lee, Mun Haeng;Lee, Hee Keyung;Cho, Pyeng Hwa;Kim, Young Shik;Cho, Suk Keyung;Kim, Sung Eun;Chun, Hee;Kim, Hong Gi;Kim, Sang Woo;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.94-98
    • /
    • 2015
  • Tomato black leaf molds were collected from the six metropolitan cities, which were occurred mainly from the end of August until November. There was no significant difference on the fungal growth between potato dextrose agar and tomato-oatmeal agar media. The mycelial growth of the fungus was robust at a relatively high temperature, from 28 to $30^{\circ}C$. The suppression rates of hyphal growth ranged from 17-98% on the media supplemented with four different chemicals such as difenoconazole, fluquinconazole and prochloraz manganese complex, metconazole, and flutianil and there is no different suppression rates of the fungicides on the tested Pseudocercospora fuligena isolates.

Quality characteristics of plant-based whipped cream with ultrasonicated pea protein

  • Insun Kim;Kwang-Deog Moon
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.64-79
    • /
    • 2024
  • The rise in popularity of vegetarian and plant-based diets has led to extensive research into plant-based whipped creams. Whipped cream is an oil-in-water emulsion that creates foam through whipping, stabilizing the foam with proteins and fats. Pea protein is an excellent emulsifier and foaming agent among plant-based proteins, but its application in whipped cream is currently limited. The objective of this study was to investigate the quality characteristics of plant-based whipped cream made with ultrasonicated pea protein. The whipped creams were evaluated based on their quality characteristics. A commercially available dairy whipped cream (CON) was used as a control. Plant-based creams were evaluated using pea protein solution, cocoa butter, and canola oil to produce un-ultrasonicated pea protein whipped cream (PP) and ultrasonicated pea protein whipped cream (UPP) at 360 W for 6 min. UPP significantly reduced whipping time and foam drainage compared with CON and PP, resulting in significantly increased overrun, fat destabilization, and hardness. Optical microscopy showed that UPP had smaller fat globules and bubble size than PP. The fat globules of UPP and CON were mostly below 5 ㎛, whereas those of PP were distributed at 5-20 ㎛. Finally, ultrasonication significantly improved the overrun, foam drainage, fat destabilization, and hardness of UPP, which are significant quality characteristics of whipped creams. Therefore, ultrasonicated plant-based pea protein whipped cream is believed to be a viable alternative to dairy whipped cream.

Solubilization of Plant Cell Walls by Extrusion (압출성형에 의한 식물세포벽의 수용화)

  • 황재관;김종태;홍석인;김철진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.358-370
    • /
    • 1994
  • Plant cell walls consist of a variety of chemical constituents such as cellulose, humicelluloses, pertins, lignin, glycoproteins, etc. These components are strongly linked through hydrogen , covalent, ionic and hydrophobic bondings, which thus confers the self-protection capability on plants. Some processing by-products (hulls, brans, pomaces) of cereal, fruits and vegetables are very limited in further utilization due to their compact structural rigidity. In view of the fact that the plant cell walls are essentially composed of dietary fiber components , solubilization of the strong intermolecular linkage s can contribute to increasing the soluble dietary fiber content and thus diversifying the functional and physiological role of plant cell walls as dietary fiber sources. This article reviews the chemical constituents of cereals, fruits & vegetables and brown seaweeds with reference to their intermoleuclar linkages. An particular emphasis will be placed on the solubilizing phenomena of rigid plant cell walls by extrusion and the resulting change of functional properties. It is suggested that underutilized food resources, typically exemplified by various food processing by-products and surplus seaweeds, can be successfully modified toward improved functional performance by extrusion.

  • PDF

Phenolic Compounds in Plant Foods: Chemistry and Health Benefits

  • Naczk, Marian;Shahidi, Fereidoon
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.200-218
    • /
    • 2003
  • Phenolic compounds in food and plant materials belong to the simple phenols, phenolic acids, coumarins, flavonoids, stilbenes, tannins, lignans and lignins, all of which are considered as secondary plant metabolites. These compounds may be synthesized by plants during normal development or in response to stress conditions. Phenolics are not distributed uniformly in plants. Insoluble phenolics are components of cell walls while soluble ones are present in vacuoles. A cursory account of phenolics of cereals, beans, pulses, fruits, vegetables and oilseeds is provided in this overview. The information on the bioavailability and absorption of plant phenolics remains fragmentary and diverse. Pharmacological potentials of food phenolics ave extensively evaluated. However, there are many challenges that must be overcome in order to fully understand both the function of phenolics in plant as well as their health effects.

Isolation of novel bovine parainfluenza virus type 5 (bPIV5) and its incidence in Korean cattle

  • Yang, Dong-Kun;Nah, Jin-Ju;Kim, Ha-Hyun;Choi, Sung-Suk;Bae, You-Chan;Park, Jung-Won;Song, Jae-Young
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • Four viruses showing cytopathic effects in MDBK cells were isolated from brains of cattle showing downer cattle syndrome in 2012. The isolates were confirmed to belong to the genus Rubulavirus of the subfamily Paramyxovirinae. Isolate QIA-B1201 had the ability to hemagglutinate red blood cells from several species of animals and was capable of adsorbing guinea pig erythrocytes on the surface of infected Vero cells. Nucleotide sequence analysis showed that two isolates (QIA-B1201 and QIA-B1204) had high similarity with other human and animal PIV5 isolates ranging from 98.1 to 99.8%. The highest sequence similarity of the two isolates corresponded to strain KNU-11 (99.8% at the nucleotide and amino acid level) isolated from suckling piglets in Korea in 2012. To evaluate the virulence of strain QIA-B1201, we inoculated bPIV5 into 5 week-old mice via both the intraperitoneal and intracranial route. Body weight was not significantly altered in mice inoculated with QIA-B1201. In this study, we isolated and characterized novel bPIV5s from brain samples showing downer cattle syndrome, but were not able to elucidate the pathogenicity of the bPIV5s in mice.

Generation of a recombinant rabies virus expressing green fluorescent protein for a virus neutralization antibody assay

  • Yang, Dong-Kun;Kim, Ha-Hyun;Park, Yu-Ri;Yoo, Jae Young;Park, Yeseul;Park, Jungwon;Hyun, Bang-Hun
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.56.1-56.10
    • /
    • 2021
  • Background: Fluorescent antibody virus neutralization (FAVN) test is a standard assay for quantifying rabies virus-neutralizing antibody (VNA) in serum. However, a safer rabies virus (RABV) should be used in the FAVN assay. There is a need for a new method that is economical and time-saving by eliminating the immunostaining step. Objectives: We aimed to improve the traditional FAVN method by rescuing and characterizing a new recombinant RABV expressing green fluorescent protein (GFP). Methods: A new recombinant RABV expressing GFP designated as ERAGS-GFP was rescued using a reverse genetic system. Immuno-fluorescence assay, peroxidase-linked assay, electron microscopy and reverse transcription polymerase chain reaction were performed to confirm the recombinant ERAGS-GFP virus as a RABV expressing the GFP gene. The safety of ERAGS-GFP was evaluated in 4-week-old mice. The rabies VNA titers were measured and compared with conventional FAVN and FAVN-GFP tests using VERO cells. Results: The virus propagated in VERO cells was confirmed as RABV expressing GFP. The ERAGS-GFP showed the highest titer (108.0 TCID50/mL) in VERO cells at 5 days post-inoculation, and GFP expression persisted until passage 30. The body weight of 4-week-old mice inoculated intracranially with ERAGS-GFP continued to increase and the survival rate was 100%. In 62 dog sera, the FAVN-GFP result was significantly correlated with that of conventional FAVN (r = 0.95). Conclusions: We constructed ERAGS-GFP, which could replace the challenge virus standard-11 strain used in FAVN test.

Isolation and identification of mammalian orthoreovirus type 3 from a Korean roe deer (Capreolus pygargus)

  • Yang, Dong-Kun;An, Sungjun;Park, Yeseul;Yoo, Jae Young;Park, Yu-Ri;Park, Jungwon;Kim, Jong-Taek;Ahn, Sangjin;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.13.1-13.8
    • /
    • 2021
  • Mammalian reovirus (MRV) causes respiratory and intestinal disease in mammals. Although MRV isolates have been reported to circulate in several animals, there are no reports on Korean MRV isolates from wildlife. We investigated the biological and molecular characteristics of Korean MRV isolates based on the nucleotide sequence of the segment 1 gene. In total, 144 swabs from wild animals were prepared for virus isolation. Based on virus isolation with specific cytopathic effects, indirect fluorescence assays, electron microscopy, and reverse transcription-polymerase chain reaction, only one isolate was confirmed to be MRV from a Korean roe deer (Capreolus pygargus). The isolate exhibited a hemagglutination activity level of 16 units with pig erythrocytes and had a maximum viral titer of 105.7 50% tissue culture infectious dose (TCID50)/mL in Vero cells at 5 days after inoculation. The nucleotide and amino-acid sequences of the partial segment S1 of the MReo2045 isolate were determined and compared with those of other MRV strains. The MReo2045 isolate had nucleotide sequences similar to MRV-3 and was most similar (96.1%) to the T3/Bat/Germany/342/08 strain, which was isolated in Germany in 2008. The MReo2045 isolate will be useful as an antigen for sero-epidemiological studies and developing diagnostic tools.

Expression of the VP2 protein of feline panleukopenia virus in insect cells and use thereof in a hemagglutination inhibition assay

  • Yang, Dong-Kun;Park, Yeseul;Park, Yu-Ri;Yoo, Jae Young;An, Sungjun;Park, Jungwon;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • Feline panleukopenia virus (FPV) causes leukopenia and severe hemorrhagic diarrhea, killing 50% of naturally infected cats. Although intact FPV can serve as an antigen in the hemagglutination inhibition (HI) test, an accidental laboratory-mediated infection is concern. A non-infectious diagnostic reagent is required for the HI test. Here, we expressed the viral protein 2 (VP2) gene of the FPV strain currently prevalent in South Korea in a baculovirus expression system; VP2 protein was identified by an indirect immunofluorescence assay, electron microscopy (EM), Western blotting (WB), and a hemagglutination assay (HA). EM showed that the recombinant VP2 protein self-assembled to form virus-like particles. WB revealed that the recombinant VP2 was 65 kDa in size. The HA activity of the recombinant VP2 protein was very high at 1:215. A total of 143 cat serum samples were tested using FPV (HI-FPV test) and the recombinant VP2 protein (HI-VP2 test) as HI antigens. The sensitivity, specificity, and accuracy of the HI-VP2 test were 99.3%, 88.9%, and 99.3%, respectively, compared to the HI-FPV test. The HI-VP2 and HI-FPV results correlated significantly (r = 0.978). Thus, recombinant VP2 can substitute for intact FPV as the serological diagnostic reagent of the HI test for FPV.