• 제목/요약/키워드: Plant design

Search Result 3,854, Processing Time 0.04 seconds

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Stabilization of Multirate Sampled-Data Control Systems in Case of Open-Loop Unstable Plant (개루프 상태에서 플랜트가 불안정한 경우에 대한 멀티레이트 표본 데이터 제어 시스템의 안정화)

  • Son, Seok-Bo;Park, Sang-Hyeon;Kim, Yeong-Baek;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.547-555
    • /
    • 2002
  • This paper proposes a stabilizing controller for the multirate sampled-data systems, which have a periodic output measurement scheme, in case of the open-loop unstable plant. A sufficient condition for maintaining observability in the multirate sampled-data systems is derived and a design strategy for filtered disturbance rejection is proposed. We also propose a design method for the plant output estimator. It is shown that the proposed pre-stabilizing controllers can stabilize the plant through the simulations. The proposed controller has IMC structure, and can be decomposed into the pre-stabilizing controller, the plant output estimator, the filtered disturbance estimator and the inverse of the fast pre-stabilized plant model. We assume that the plant is open-loop unstable and the disturbance consists of a sum of finite number of sinusoids with different frequencies. Some examples are presented for illustrations.

Performance Based Design of Passive Fire Protection Using Consequence Analysis (사고 영향 분석을 이용한 성능위주의 내화설계)

  • Han, Dong-Hoon;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2004
  • Performance based design is a recent evolutionary step in the process of designing fire protection systems. In essence, it is a logical design process resulting in a solution that achieves a specified performance. Sometimes the prescriptive solutions presented in various codes and standards are too expensive or inflexible. Often the solutions do not and enables optimization of a solution for cost and function. In this study, performance based design was carried out to determine the extent of passive fire protection for oil terminal facilities. The results of performance based design were compared with those of prescriptive code based design. Performance based design is not always more economic than prescriptive code based design but provides more reliable and effective design that is fit for the purpose.

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.

Geotechnical Site Investigation for Designing of Tidal Power Plant Structures (조력발전 구조물 설계를 위한 지반조사;인천만 지반조사 사례)

  • Oh, Myoung-Hak;Lee, Kwang-Soo;Park, Jin-Soon;Yum, Ki-Dai;Cha, Dai-Wook;Yang, Geun-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.613-616
    • /
    • 2007
  • The main structures that comprise a tidal power plant are turbine structure, sluice structure, tide embankment and gate. Since these structures are founded on seabed ground, an extensive geotechnical site investigation to evaluate the engineering properties of field soils must be conducted prior to design and construction. According to the results of geotechnical site investigation conducted at the planned site for construction of Incheon bay tidal power plant, soft ground generally lie 7 meters below the seabed surface level. This research suggests the reliable and economical design of foundations and ground improvements required for construction of main structures in Incheon bay tidal power plant, with considerations on field conditions.

  • PDF

Stabilization for Multirate Sampled-data Control Systems in case of Open-loop Unstable Plant

  • Son, Seok-Bo;Kim, Young-Baek;Park, Chansik;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.488-488
    • /
    • 2000
  • This paper proposes a stabilizing controller for multirate sampled-data systems which have a periodic output The proposed controller has IMC structure, and can be decomposed into a ye-stabilizing controller, an output estimator, a filtered disturbance estimator and the inverse of the fast ye-stabilized plant model. We assume that the plant is open-loop unstable and the disturbance consists of a sum of finite number of sinusoids with different frequencies. A sufficient condition for maintaining observability in the multirate sampled-data system is derived and a design strategy for filtered disturbance rejection is proposed. In addition, we propose a design method (or the plant output estimator. The simulation results show that the proposed stabilizing controllers can stabilize the plant

  • PDF

A Research the Optimal Plant Life Cycle using Case Study (사례를 통한 최적 라이프 사이클에 관한 연구)

  • 심종칠;김창은;고용해
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.83-89
    • /
    • 1995
  • We call as plant life cycle the process starting from plant plan, design to disuse by way of construction, operation, but the plant facility inside it comes to changes of cope with various inner factor like blazing phenomenon and outer factor according to economic state. On the presumption of these factors, the problem is brought about how plant should be managed, this study attempt to suggest the conservation management through economic evaluation in investment design and alternative, that is, methodology connecting that of economical efficiency evaluation based on LCC(Life Cycle Costing) thinking method and facility management with that of life prediction.

  • PDF

A study on Management System Design of Plant Evaluation for Safety and Productivity (안전과 생산성을 고려한 설비평가의 관리체계 설계)

  • Cho, Yong-Wook;Seo, Jang-Hun;Yang, Kwang-Mo
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.197-204
    • /
    • 2008
  • This study's purpose centers plant management activities that is management system for total plant efficiency's maximization, plant evaluation system that production and safety management activities factor that is enforcing in manufacturing industry can develop evaluation model that can evaluate quantitative activities in process that maximize productivity and safety efficiency wishes to do design.

Unit Response Optimizer mode Design of Ultra Super Critical Coal-Fired Power Plant based on Fuzzy logic & Model Predictive Controller (퍼지 로직 및 모델 예측 제어기 적용을 통한 초초임계압 화력발전소 부하 응답 최적화 운전 방법 설계)

  • Oh, Ki-Yong;Kim, Ho-Yol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2285-2290
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant component. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control process of power plant in ultra super critical point because that point has highly nonlinear characteristics. In this paper, new control logic, Unit Response Optimizer Controller(URO Controller) which is based on Fuzzy logic and Model Predictive Controller, is introduced for better performance. Then its performance is tested and analyzed with design guideline.

Analysis on Accuracy and Indigenity of Landscape Plants Species in Planting Design and Construction (식재설계 및 시공시 조경수종 사용에 있어서의 정확성과 자생성 분석)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.251-258
    • /
    • 1998
  • The purposes of this study was to investigate accuracy and indigenity of landscape plant species in planting design and construction at housing complex and offer basic data for improving precision of planting construction. The scientific name of landscape plant species was described in planting drawings at only two sites among twelve survey sites. According to analysis on indigenity of plant species in planting drawings, it was found that the component ratio of foreign species was the highest and the component ratio of native species at public housing complex was the lowest. The component ratio of landscape plant species in planting construction was severely differed to that of planting drawings. Also the component ratio of cultivar was higher than that of planting drawings due to planting of sevveral cultivars for one species in planting drawings. In the result of accuracy analysis on landscape plant species in planting construction, it was found that mean ratio of inacccurate species was 33.2% at public housing complex, 29.6% at local company housing complex and 26.4% at nationwide company housing complex. It was found that several cultivars were planted for one species in planting drawings. The representative species which were planted by several cultivars were Camellia japonica, Rododendron spp., Prunus spp. and Magnolia spp. and so on. In order to promote the precision and speciality of planting design and construction, scientific and cultivar name of plants should be described in planting drawings.

  • PDF