• 제목/요약/키워드: Plant canopy model

검색결과 44건 처리시간 0.028초

Continuous monitoring of the canopy gas exchange of rice and soybean based on the aerodynamic analysis of the plant canopy

  • Tanaka, Yu;Katayama, Hiroto;Kondo, Rintaro;Homma, Koki;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.60-60
    • /
    • 2017
  • It is important to measure the gas exchange activity of the crops in canopy scale to understand the process of biomass production and yield formation. Thermal imaging of the canopy surface temperature is a powerful tool to detect the gas exchange activity of the crop canopy. The simultaneous measurement of the canopy temperature and the meteorological data enables us to calculate the canopy diffusive conductance ($g_c$) based on the heat flux model (Monteith et al. 1973, Horie et al. 2006). It is, however, difficult to realize the long-term and continuous monitoring of $g_c$ due to the occurrence of the calculation error caused by the fluctuation of the environmental condition. This is partly because the model assumption is too simple to describe the meteorological and aerodynamic conditions of the crop canopy in the field condition. Here we report the novel method of the direct measurement of the aerodynamic resistance ($r_a$) of the crop canopy, which enables us the stable and continuous measurement of the gas exchange capacity of the crop plants. The modified heat balance model shows the improved performance to quantify $g_c$ under the fluctuating meteorological condition in the field. The relationship between $g_c$ and biomass production of rice and soybean varieties is also discussed in the presentation.

  • PDF

植物의 樹冠에 있어서 光의 遮斷과 吸收 Model 에 關한 硏究 (A Study on the Model of Light Interception and Absorption in Plant Canopies)

  • Chang, Nam-Kee;Kyung-Oh Kwon
    • The Korean Journal of Ecology
    • /
    • 제8권2호
    • /
    • pp.61-68
    • /
    • 1985
  • The modeling of interception and absorption of light was studied in plant canopies at Mt. Kwanak. Followering results were obtained. Light intensity passing through the stacked leaves is attenuated exponentially. This phenomenon seems to be more clearly applied to the plant canopies, if they have large cumulative leaf area and are matured densely. Light interception and absorption are influenced by leaf thickness, shape pigments, and leaf area, and they have great effect on the maturation of canopies. It was confirmed that the light penetrating through the stratified canopies is decreased exponentially in dual pattern. The cumulative leaf area of a definite space in a certain plant canopy is the same as the growth of leaf area of the canopy at that time. A hypothetical model for calculating the light absorption in plant canopies, was established on the bases of phenomena that incident light is captured at the maximum level and light inerception effect is minimized by leaves.

  • PDF

광도, CO2 농도 및 정식 후 생육시기에 따른 식물공장 재배 상추의 군락 광합성 모델 확립 (Development and Validation of a Canopy Photosynthetic Rate Model of Lettuce Using Light Intensity, CO2 Concentration, and Day after Transplanting in a Plant Factory)

  • 정대호;김태영;조영열;손정익
    • 생물환경조절학회지
    • /
    • 제27권2호
    • /
    • pp.132-139
    • /
    • 2018
  • 작물의 생산량은 광합성과 밀접한 관계가 있으며, 광합성 속도는 다양한 환경 요인에 의해 변화한다. 광합성 속도는 작물의 생육 상태나 생육 속도를 판단하는 지표로 사용되며, 작물 재배 시설을 구축하는 데 고려해야 하는 중요한 요인이다. 이 연구의 목적은 광도, $CO_2$ 농도 및 생육 단계에 의해 변화하는 로메인 상추의 군락 광합성 속도 모델을 개발하는 것이다. 군락 광합성 속도는 정식 후 5, 10, 15, 20 일차에서 5단계의 $CO_2$ 농도($600-2,200{\mu}mol{\cdot}mol^{-1}$)와 5단계의 광조건($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)이 처리된 3개의 밀폐 아크릴 챔버($1.0{\times}0.8{\times}0.5m$) 내에서 측정하였다. 먼저 세 가지 환경 요인을 사용하는 식들을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과, 단순곱 모델의 $R^2$는 0.923이었으며, 수정 직각쌍곡선 모델의 $R^2$는 0.941을 나타내었다. 따라서 수정 직각쌍곡선 모델이 광도, $CO_2$ 농도, 생육 단계의 3 변수에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 것으로 판단하였다. 본 연구에서 개발된 군락 광합성 모델은 식물공장에서 상추 재배를 위해 생육 단계별로 설정해야 할 최적의 광도와 $CO_2$ 농도를 결정하는 데 도움이 될 것으로 생각된다.

광 추적 시뮬레이션에 의한 시간 별 파프리카의 수광 및 광합성 속도 분포 예측 (Time Change in Spatial Distributions of Light Interception and Photosynthetic Rate of Paprika Estimated by Ray-tracing Simulation)

  • 강우현;황인하;정대호;김동필;김재우;김진현;박경섭;손정익
    • 생물환경조절학회지
    • /
    • 제28권4호
    • /
    • pp.279-285
    • /
    • 2019
  • 작물의 일중 광합성량을 정확하게 추정하기 위해서는 일중 태양의 위치 변화에 따른 작물의 정확한 수광량 변화를 정확하게 예측해야 한다. 그러나, 이는 많은 시간, 비용, 노력이 소요되며, 측정의 어려움이 수반된다. 현재까지 다양한 모델링 기법이 적용되었으나 기존 방식으로는 정확한 수광 예측이 어려웠다. 본 연구의 목적은 파프리카의 3차원 스캔 모델과 광학 시뮬레이션을 이용하여 일중 시간 별 캐노피 수광 분포와 광합성 속도의 변화를 예측하는 것이다. 휴대용 3차원 스캐너를 이용하여 온실에서 재배되는 파프리카의 구조 모델을 구축하였다. 주변 개체의 유무에 따른 캐노피 수광 분포의 변화를 보기 위하여 작물 모델 별 간격을 60cm로 $1{\times}1$, $9{\times}9$ 정방형 배치하여 광학 시뮬레이션을 수행하였다. 광합성 속도는 직각쌍곡선 모델을 이용하여 계산하였다. 3차원 파프리카 모델 표면의 수광 분포는 오전 9시, 정오, 오후 3시의 태양 각도에 따라 서로 다른 양상을 보였다. 캐노피 총 수광량은 $9{\times}9$ 배치로 주변 개체 수가 늘어남에 따라 감소하였고, 태양 고도가 가장 높은 정오에서의 감소율이 가장 적었다. 캐노피 광합성 속도와 $CO_2$ 소모량 역시 수광량과 비슷한 양상을 보였으나 작물 상단부 엽의 광합성 속도 포화로 인해 수광량 변화에 비해 적은 감소율을 보였다. 본 연구에서는 파프리카의 3차원 스캔 모델과 광학 시뮬레이션을 이용하여 가상 환경 조건에서의 캐노피 수광과 광합성 분포를 분석할 수 있었으며, 이는 추후 다양한 재배 조건에서 작물 수광량과 광합성 속도를 예측하는 데에 효과적으로 활용될 수 있을 것으로 사료된다.

식생캐노피모델을 통한 저관리 조방형 옥상녹화시스템의 열해석 전산모의에 관한 연구 (A study on thermal simulation for extensive green roof system using a plant canopy model)

  • 김태한
    • 한국환경복원기술학회지
    • /
    • 제15권2호
    • /
    • pp.137-147
    • /
    • 2012
  • GRS is an effective urban ecology restoration technique that can manage a variety of environmental functions such as ecological restoration, rainwater spill control and island heat effect from a low-impact development standpoint that can be utilized in new construction and retrofits. Recently, quantitative evaluation studies, both domestic and abroad, in the areas related to these functions, including near-earth surface climate phenomenon, heavy rainwater regulation, thermal environment of buildings, have been actively underway, and there is a trend to standardize in the form of technological standards. In particular, centered on the advanced European countries, studies of standardizing the specific insulation capability of buildings with green system that comprehensively includes the green roof, from the perspective of replacing the exterior materials of existing buildings, are in progress. The limitation of related studies in the difficulties associated with deriving results that reflect material characteristics of continuously evolving systems due in part to not having sufficiently considered the main components of green system, mechanisms of vegetation, soils. This study attempts to derive, through EnergyPlus, the effects that the vegetation-related indicators such as vegetation height, FCV, etc. have on building energy load, by interpreting vegetation and soil mechanisms through plant canopy model and using an ecological standard indicator LAI that represent the condition of plant growth. Through this, the interpretations that assume green roof system as simple heat insulation will be complemented and a more practical building energy performance evaluation method that reflects numerical methods for heat fluxes phenomena that occur between ecology restoration systems comprised of plants and soil and the ambient space.

Use of Remotely-Sensed Data in Cotton Growth Model

  • Ko, Jong-Han;Maas, Stephan J.
    • 한국작물학회지
    • /
    • 제52권4호
    • /
    • pp.393-402
    • /
    • 2007
  • Remote sensing data can be integrated into crop models, making simulation improved. A crop model that uses remote sensing data was evaluated for its capability, which was performed through comparing three different methods of canopy measurement for cotton(Gossypium hirsutum L.). The measurement methods used were leaf area index(LAI), hand-held remotely sensed perpendicular vegetation index(PVI), and satellite remotely sensed PVI. Simulated values of cotton growth and lint yield showed reasonable agreement with the corresponding measurements when canopy measurements of LAI and hand-held remotely sensed PVI were used for model calibration. Meanwhile, simulated lint yields involving the satellite remotely sensed PVI were in rough agreement with the measured lint yields. We believe this matter could be improved by using remote sensing data obtained from finer resolution sensors. The model not only has simple input requirements but also is easy to use. It promises to expand its applicability to other regions for crop production, and to be applicable to regional crop growth monitoring and yield mapping projects.

생화학 및 생물리 모수들의 도출과 생권 모형(SiB2)에의 적용 (Derivation of Biochemical and Biophysical Parameters and Their Application to the Simple Biosphere Model (SiB2))

  • 채남이;김준
    • 한국농림기상학회지
    • /
    • 제1권1호
    • /
    • pp.52-59
    • /
    • 1999
  • Vegetation canopy plays an important role in $CO_2$/$H_2$O exchange between the biosphere and the atmosphere by controlling leaf stomata. In this study, rice (Oryza sativa L.), a staple crop in Asia was investigated to formulate its single leaf model of photosynthesis and stomatal conductance. Photosynthesis and stomatal conductance were measured with a portable infrared gas analyzer system. Other plant and meteorological variables were also measured. To evaluate empirical constants in this biochemical leaf model, nonlinear least squares technique was used. The maximum catalytic activity of enzyme and the maximum rate of electron transport were $ 100\mu$$m^{-2}$ $s^{-1}$ and $140 \mu$㏖ m$^{-2}$ s$^{-1}$ (@ 35$^{\circ}C$), respectively. The empirical constants, m and b, associated with stomatal conductance model were 9.7 and $0.06 m^{-2}$ $s^{-1}$ , respectively. On a leaf scale, agreements between the modeled and the measured values of photosynthesis and stomatal conductance were on average within 20%, and the simulation of diurnal variation was also satisfactory On a canopy scale, the Simple Biosphere model(SiB2) was tested using the derived parameters. The modeled energy fluxes were compared against the micrometeorologically measured fluxes over a rice canopy. Agreements between the modeled and the measured values of net radiation, sensible heat and latent heat fluxes, and $CO_2$ flux (i.e., net canopy photosynthesis) were on average within 25%.

  • PDF

광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발 (Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage)

  • 정대호;윤효인;손정익
    • 생물환경조절학회지
    • /
    • 제26권4호
    • /
    • pp.268-275
    • /
    • 2017
  • 광도와 온도 같은 환경 요인에 의해 광합성 속도가 변화하기도 하며, 생육 시기에 따른 광합성 효율의 변화가 수반되기도 한다. 본 연구에서는 흑로메인 상추(Lactuca sativa L., Asia Heuk romaine)를 이용하여 광도와 온도, 생육 시기에 따른 군락 광합성 속도를 표현하는 두 모델을 구축하고 비교하는 것을 목표로 하였다. 군락 광합성은 정식 후 4, 7, 14, 21, 28 일차 상추를 아크릴 챔버($1.0{\times}0.8{\times}0.5m$)에 넣어 측정하였으며, 이 때 챔버 내부의 온도는 $19^{\circ}C$에서 $28^{\circ}C$까지 변화시켰고 광원은 LED를 이용하여 50에서 $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$까지 변화시키며 실험하였다. 챔버 내부의 초기 이산화탄소 농도는 $2,000{\mu}mol{\cdot}mol^{-1}$로 설정하였으며, 시간에 따른 이산화탄소 농도의 변화율을 이용하여 군락 광합성 속도를 계산하였다. 각 환경요인을 표현하는 3개 식을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 온도와 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정된 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과 단순곱 모델은 0.849의 $R^2$ 값을 나타내었으며, 수정된 직각쌍곡선 모델은 0.861의 $R^2$ 값을 나타내었다. 수정된 직각쌍곡선 모델이 단순곱 모델에 비해 환경 요인(광도, 온도), 생육 요인(생육 시기)에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 모델인 것으로 판단하였다.

공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 - (Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment -)

  • 이인복;윤남규;;;이성현;김경원;이승기;권순홍
    • 생물환경조절학회지
    • /
    • 제15권4호
    • /
    • pp.289-295
    • /
    • 2006
  • 온실의 환기연구를 위한 CFD 시뮬레이션 모델에 토마토 작물을 설계함에 있어서 우선적으로 작물군의 기하학적 형상 설계 및 이의 공기 항력계수를 찾고자 하였다. 작물군 형상을 간단한 형태의 공기투과성 매체로 설계하고 이의 공기저항의 물리적 특성을 풍동실험을 통하여 구하였다. 토마토 작물군과 작물군 사이에서 측정된 값과 작물군 중앙부에서 측정되어진 값들을 분리하여 계산하여 된 결과 공기저항값인 항력계수 $C_d 값은 각각 0.2551와 0.2621로 나타났다. 최종적으로 이들의 평균값인 0.26을 Fluent CFD 프로그램의 작물군 공기투과성 매체의 x, y, z축의 내부저항값으로 입력되었다. 이 실험결과를 이용하여 전산유체역학 (CFD)을 이용한 시설내 작물군이 존재하는 경우의 온실 환기연구를 효과적으로 수행할 수 있게 되었다. 또한 풍동을 이용한 작물의 공기저항 연구를 위한 실험방법을 개발하여 앞으로도 다양한 작물들을 대상으로 공기유동의 물리적 특성연구를 수행할 수 있게 되었다.