• Title/Summary/Keyword: Plant breeding

Search Result 1,795, Processing Time 0.029 seconds

Genome-Wide Identification and Classification of the AP2/EREBP Gene Family in the Cucurbitaceae Species

  • Lee, Sang-Choon;Lee, Won-Kyung;Ali, Asjad;Kumar, Manu;Yang, Tae-Jin;Song, Kihwan
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2017
  • AP2/EREBP gene family consists of transcription factor genes with a conserved AP2 DNA-binding domain and is involved in various biological processes. AP2/EREBP gene families were identified through genome-wide searches in five Cucurbitaceae species including cucumber, wild cucumber, melon, watermelon, and bitter gourd, which consisted of more than 100 genes in each of the five species. The gene families were further divided into five groups including four subfamilies (ERF, DREB, AP2 and RAV) and a soloist group. Among the subfamilies, DREB subfamily which is known to be related to abiotic stress response was more analyzed and a total of 25 genes were identified as Cucurbitaceae homologues of Arabidopsis CBF/DREB1 genes which are important for abiotic stress-response and tolerance. In silico expression profiling using RNA-Seq data revealed diverse expression patterns of cucumber AP2/EREBP genes. AP2/EREBP gene families identified in this study will be valuable for understanding the stress response mechanism as well as facilitating molecular breeding in Cucurbitaceae crops.

Double Mutations in eIF4E and eIFiso4E Confer Recessive Resistance to Chilli Veinal Mottle Virus in Pepper

  • Hwang, JeeNa;Li, Jinjie;Liu, Wing-Yee;An, Song-Ji;Cho, Hwajin;Her, Nam Han;Yeam, Inhwa;Kim, Dosun;Kang, Byoung-Cheorl
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.329-336
    • /
    • 2009
  • To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinal mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum 'Dempsey' containing an elF4E mutation ($pvr1^2$) and C. annuum 'Perennial' containing an elFiso4E mutation (pvr6). C. annuum 'Dempsey' was susceptible and C. annuum 'Perennial' was resistant to ChiVMV. All $F_1$ plants showed resistance, and $F_2$ individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five $F_2$ and 329 $F_3$ plants of 17 families were genotyped with $pvr1^2$ and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both $pvr1^2$ and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in elF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of $F_2$ plants revealed that all plants containing homozygous genotypes of both $pvr1^2$ and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of elF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper.

Development of a Simple Method for Detecting Capsaicinoids Using Gibb's Reagent in Pepper (Gibb's Reagent를 이용한 캡사이시노이드 간이 분석 방법)

  • Jeong, Hee-Jin;Hwang, Do-Yeon;Ahn, Jeong-Tak;Chun, Jin-Young;Han, Ko-Eun;Lee, Woo-Moon;Kwon, Jin-Kyung;Lee, Yong-Jik;Kang, Byoung-Cheorl
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.294-300
    • /
    • 2012
  • Capsaicinoids are responsible for the pungency of Capsicum species. Among the several reported methods for quantifying capsaicinoids in pepper, liquid chromatography methods such as TLC and HPLC have been the most widely used due to their precision and reliability. However, they are quite expensive and time consuming to be applied to the field breeding. In this paper, we demonstrated that Gibb's reagent, 2,6-dichloroquinone chlorimide, mediated measurement of capsaicinoids is a simple and reliable method for determining the presence/absence of capsaicinoids, and estimating the amount of capsacinoids in pepper fruits. The capsaicinoids could be also detected via colorimetiric reactions of the Gibb's reagent. This simple method has been verified to be as accurate as the HPLC analysis. We have also modified this method for a high through-put analysis. This method will be useful for measuring capsaicinids in pungency breeding programs in pepper.

Bridging Comparative Genomics and DNA Marker-aided Molecular Breeding

  • Choi, Hong-Kyu;Cook, Douglas R.
    • Korean Journal of Breeding Science
    • /
    • v.43 no.2
    • /
    • pp.103-114
    • /
    • 2011
  • In recent years, genomic resources and information have accumulated at an ever increasing pace, in many plant species, through whole genome sequencing, large scale analysis of transcriptomes, DNA markers and functional studies of individual genes. Well-characterized species within key plant taxa, co-called "model systems", have played a pivotal role in nucleating the accumulation of genomic information and databases, thereby providing the basis for comparative genomic studies. In addition, recent advances to "Next Generation" sequencing technologies have propelled a new wave of genomics, enabling rapid, low cost analysis of numerous genomes, and the accumulation of genetic diversity data for large numbers of accessions within individual species. The resulting wealth of genomic information provides an opportunity to discern evolutionary processes that have impacted genome structure and the function of genes, using the tools of comparative analysis. Comparative genomics provides a platform to translate information from model species to crops, and to relate knowledge of genome function among crop species. Ultimately, the resulting knowledge will accelerate the development of more efficient breeding strategies through the identification of trait-associated orthologous genes and next generation functional gene-based markers.

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Nguyen, Toan Khac;Lim, Jin Hee
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.

Evaluating phylogenetic relationships in the Lilium family using the ITS marker

  • Ghanbari, Sina;Fakheri, Barat Ali;Naghavi, Mohammad Reza;Mahdinezhad, Nafiseh
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.236-241
    • /
    • 2018
  • Lilium is a perennial bulbous plant belonging to the liriotypes genus. Our aim was to study the phylogenetic relationships of the Lilium family. Two varieties of Lilium ledebourii, 44 varieties of the gene bank, and one variety from the Tulipa family served as the out group. In order to study the diversity between lilium masses, ITS regions were used to design the marker. The results showed that the guanine base is the most abundant nucleotide. Relatively high conservation was observed in the ITS regions of the populations (0.653). Phylogenetic analysis showed that sargentiae and hybrid varieties are older than other varieties of the Lilium family. Also, the location of L. ledebourii varieties (Damash and Namin) was identified in a phylogenetic tree by using the ITS marker. Overall, our research showed that ITS molecular markers are very suitable for phylogenetic studies in the Lilium family.

Use of Androgenesis in Haploid Breeding

  • Yi, Gihwan;Kim, Kyung-Min;Sohn, Jae-Keun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.75-82
    • /
    • 2013
  • Haploids are plants with a gametophytic number of chromosomes in their sporophytes. Androgenesis occurs from asymmetric division of pollen grains into generative cells and vegetative cells, followed by re-entry of the vegetative cell during S-phase, which causes microspores progress into G2/M transition in culture. One of the most interesting features of haploids is the possibility to produce doubled haploid (DH) individuals. Doubled haploidy is extremely useful to plant breeders because it enables shortened breeding periods and efficiency in selection of useful recessive agronomic traits. Doubled-haploid technology is not only applicable to breeding, but also to transformation programs of desired genes. In addition to practical breeding programs, DH lines provide useful materials of fundamental genetics including exploitation of QTLs and genes conferred with various agronomic traits by establishing DH populations. This paper provides historical overviews on androgenesis and describes several mechanisms associated with pollen embryogenesis, including mode of actions in pollen embryogenesis, mechanisms of chromosome doubling and factors affecting androgenesis. We also discuss recent progress in application of haploids to breeding, genes associated with in vitro response and drawbacks to anther culture for application of doubled haploids in crop breeding.

  • PDF