• Title/Summary/Keyword: Plant Operations

Search Result 366, Processing Time 0.026 seconds

Comparative Analysis of the Prerequisite Items Applicable to the HACCP in Livestock Processing Plants (축산물가공장 HACCP 선행요건 평가항목 개선을 위한 비교분석)

  • Hong, Chong-Hae;Cho, Da-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • We analyze the HACCP Prerequisites of National Veterinary Research and Quarantine Service (NVRQS), Korea Food and Drug Administration(KFDA), and US Food Safety and Inspection Service (FSIS) and recommend contents and ranges to be complemented and used for the preparation of guidelines. We used the HACCP Notice of the Processing Livestock Act, the HACCP Application Manual for Livestock Processing Plants, the HACCP Notice of the Food Sanitation Act, US GPO 9 CFR and 21 CFR, US FSIS Directive 11,000.1, and HACCP-based Inspection reference guide of Consumer Services, North Carolina Department of Agriculture. The Prerequisites of NVRQS and KFDA are composed of 66 and 84 items respectively, without detailed guidelines for their application. This may decisively affect the application in the field and the evaluation activities. Water supplies, washing and disinfection monitoring tools, and examining and correcting plan are required to be improved. If the standards of compliance of each Prerequisite item as well as performance guidelines are given, the application and evaluation will be performed more effectively. The evaluation items should be associated with Prerequisite operations such as non-compliance complement, self-evaluation, and record keeping. Hazards found during official inspection should be promptly controlled not to contaminate the work places and processing items. As the HACCP is expected to spread from farms to tables, the standardized Prerequisite program among the official governments should be prepared.

Development of Application Method of Influent Wastewater Generation and Activated Sludge Process Design Based on Probability Density Function (확률밀도함수 기반 유입하수 재현 및 활성슬러지공정 설계기법 개발)

  • You, Kwangtae;Kim, Jongrack;Yun, Zuhwan;Pak, Gijung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.140-148
    • /
    • 2017
  • An important factor in determining the design and treatment efficiency of wastewater treatment plants (WWTPs) is the quantity and quality of influent. These detailed and accurate information is essential for process control, diagnosis and operation, as well as the basis in designing the plant, selecting the process and determining the optimal capacity of each bioreactor. Probabilistic models are used to predict the wastewater quantity and quality of WWTPs, which are widely used to improve the design and operation of WWTPs. In this study, the optimal probability distribution of time series influent data was derived for predicting water quantity and quality, and wastewater influent data were generated using the Monte Carlo simulation analysis. In addition, we estimated various alternatives for the improvement of bioreactor operations based on present operation condition using the generated influent data and activated sludge model, and suggested the alternative that can operate the most effectively. Thus, the influent quantity and quality are highly correlated with the actual operation data, so that the actual WWTPs influent characteristics were well reproduced. Using this will improve the operating conditions of WWTPs, and a proposed improvement plan for the current TMS (Tele Monitoring System) effluent quality standards can be made.

GPS-X Based Modeling on the Process of Gang-byeon Sewage Treatment Plant and Design of Recycle Water Treatment Process (GPS-X 기반 모델링에 의한 강변사업소 처리효율 분석 및 반류수 처리 공정 설계)

  • Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1493-1498
    • /
    • 2016
  • The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen ($NH_3{^+}-N$) was converted to nitrate nitrogen ($NO_3{^-}-N$). The concentrations of $NH_3{^+}-N$ and $NO_3{^-}-N$ were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than $10^{\circ}C$, the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.

Ergonomic Evaluation of a Control Room Design of Radioactive Waste Facility using Digital Human Simulation (Digital Human Simulation을 활용한 방사성 폐기물 처리장 주제어실의 인체공학적 평가)

  • Lee, Baek-Hee;Chang, Yoon;Jung, Ki-Hyo;Jung, Il-Ho;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.383-391
    • /
    • 2010
  • The present study evaluated a preliminary control room (CR) design of radioactive waste facility using the $JACK^{(R)}$ human simulation system. Four digital humanoids ($5^{th}$, $50^{th}$, $95^{th}$, and $99^{th}$ percentiles) were used in the ergonomic evaluation. The first three were selected to represent 90% of the target population (Korean males aged 20 to 50 years) and the last to reflect the secular trend of stature for next 20 years in South Korea. The preliminary CR design was assessed by checking its compliance to ergonomic guidelines specified in NUREG-0700 and conducting an in-depth ergonomic analysis with a digital prototype of the CR design and the digital humanoids in terms of postural comfort, reachability, visibility, and clearance. For identified design problems, proper design changes and their validities were examined using JACK. A revised CR design suggested in the present study would contribute to effective and safe operations of the CR as well as operators' health in the workplace.

Effects of Culture Methods on the Growth Rates and Fatty Acid Profiles of Euglena gracilis (배양방법에 따른 Euglena gracilis의 성장 및 지방산 조성)

  • Jeong, U-Cheol;Choi, Jong-Kuk;Kang, Chang-Min;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.38-44
    • /
    • 2016
  • The quality and quantity of live food sources strongly influence the success of fish production in farming operations. Thus, critical studies of live forage species are a crucial element for progress in fish aquaculture. The fat content of food is an especially important determinant of growth in marine fish. Omega-3 highly unsaturated fatty acids (HUFA) are essential components of diet that determine the nutritional value of larval fish. Euglena is a protist that has potential as a forage species. These single-celled organisms have plant and animal characteristics they are motile, elliptical in shape and 15–500 μm in diameter. Their nutritional content is excellent, but most studies have focused on cells raised in autotrophic culture. We therefore examined differences in the lipid and fatty acid contents, and the growth of Euglena cells grown under autotrophic, heterotrophic, and mixotrophic conditions. Biomass production reached 15.03 g/L, 12.28 g/L, and 3.66 g/L under mixotrophy, heterotrophy, and autotrophy, respectively. The proportional n-3 HUFA content differed among culture methods: 10.04%, 5.80% and 10.01% in mixotrophic, heterotrophic and autotrophic cultures, respectively. Mixotrophy was to be the best form of cultivation for improving the growth and nutritional content of Euglena.

Case study on operating characteristics of gas fueled ship under the conditions of load variation

  • Chun, Jung-Min;Kang, Ho-Keun;Kim, You-Taek;Jung, Mun-Hwa;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.447-452
    • /
    • 2016
  • The use of gas as fuel, particularly liquefied natural gas (LNG), has increased in recent years owing to its lower sulfur and particulate emissions compared to fuel oil or marine diesel oil. LNG is a low temperature, volatile fuel with very low flash point. The major challenges of using LNG are related to fuel bunkering, storing, and handling during ship operation. The main components of an LNG fuel system are the bunkering equipment, fuel tanks, vaporizers/heaters, pressure build-up units (PBUs), and gas controlling units. Low-pressure dual-fuel (DF) engines are predominant in small LNG-powered vessels and have been operating in many small- and medium-sized ferries or LNG-fueled generators.(Tamura, K., 2010; Esoy, V., 2011[1][2]) Small ships sailing at coast or offshore rarely have continuous operation at constant engine load in contrast to large ships sailing in the ocean. This is because ship operators need to change the engine load frequently due to various obstacles and narrow channels. Therefore, controlling the overall system performance of a gas supply system during transient operations and decision of bunkering time under a very poor infrastructure condition is crucial. In this study, we analyzed the fuel consumption, the system stability, and the dynamic characteristics in supplying fuel gas for operating conditions with frequent engine load changes using a commercial analysis program. For the model ship, we selected the 'Econuri', Asia's first LNG-powered vessel, which is now in operation at Incheon Port of South Korea.

Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 케이싱 열피로 균열발생 해석)

  • Kang, M.S.;Yun, W.N.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.52-58
    • /
    • 2009
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Many casing bolts are used to assemble two horizontally separated casings, the gas turbine casing and the compressor casing, in both of axial and vertical directions. Because drilled holes for casing bolts in vertical direction are often too close to drilled holes for casing bolts in axial direction, one can observe cracks in the area frequently during operations of a gas turbine. In this study of the root cause analysis for the cracking initiating from the drilled holes of the casings of a gas turbine, the finite element analysis(FEA) was applied to evaluate the thermal and mechanical characteristics of the casings. By applying the field operation data recorded from combined cycle power plants for FEA, thermal and thermo-mechanical characteristics of a gas turbine are analyzed. The crack is initiated at the geometrical weak point, but it is found that the maximum stress is relieved when the same type of cracks is introduced on purpose during FEA. So, it is verified that the local fracture could be delayed by machining the same type of defects near the hole for casing flange bolts of the gas turbine, where the crack is initiated.

  • PDF

Thermal Stress Evaluation by Elastic-Creep Analysis during Start-up of Boiler Header (보일러 헤더 기동시의 탄성 크리프 해석에 의한 열응력 평가)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.17-22
    • /
    • 2009
  • Thermal stress and elastic creeping stress analysis was conducted by finite element method to simulate start-up process of a boiler header of 500MW standard fossil power plant. Start-up temperature and operating pressure history were simplified from the real field data and they were used for the thermal stress analysis. Two kinds of thermal stress analysis were considered. In the first case only temperature increase was considered and in the second case both of temperature and operating pressure histories were considered. In the first analysis peak stress was occurred during the temperature increase from the room temperature. Hence cracking or fracture may occur at the temperature far below the operating maximum temperature. In the results of the second analysis von Mises stress appeared to be higher after the second temperature increase. This is due to internal pressure increase not due to the thermal stress. When the stress components of radial(r), hoop($\theta$) and longitudinal(z) stress were investigated, compression hoop stress was occurred at inner surface of the stub tube when the temperature increased from room temperature to elevated temperature. Then it was changed to tension hoop stress and increased because of the operating pressure. It was expected that frequent start-up and shut-down operations could cause thermal fatigue damage and cracking at the stub tube hole in the header. Elastic-creeping analysis was also carried out to investigate the stress relaxation due to creep and stabilized stress after considerable elapsed time. The results could be used for assessing the creep damage and the residual life of the boiler header during the long-tenn service.

Development of A Machine-to-Machine (M2M)-based Public Restroom Management System (사물지능통신(M2M)을 이용한 공중화장실 관리시스템의 개발)

  • Kim, Jun Yeob;Ahn, Dae Gun;Bae, Byoung Wook;Choi, Yong Gu;Kang, Chang Soon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1473-1483
    • /
    • 2014
  • A public restroom is different from a household toilet in terms of location and a large number of sharing users. In addition, public restroom is usually messy and filthy. Recently, public toilet tends to be clearly managed than before, but it still has hygienic and clear problems. In this paper, we propose a machine-to-machine (M2M)-based public restroom management system to solve these problems, in which the system with a wireless communication device sends the status information of the toilet, such as blockage or trouble detected by a sensor, to the manager of the restroom at a remote location. In particular, we have developed a prototype management system for public restroom taking into account several system requirements, and verified the basic operations and performance of the management system. With the application of the system to public facilities, it will furnish users with more pleasant environments by restroom administrators who can respond effectively to the troubled toilet.

Efficient Inverter Type Compressor System using the Distribution of the Air Flow Rate (공기 변화량 분포를 이용한 효율적인 인버터타입 압축기 시스템)

  • Shim, JaeRyong;Kim, Yong-Chul;Noh, Young-Bin;Jung, Hoe-kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2396-2402
    • /
    • 2015
  • Air compressor, as an essential equipment used in the factory and plant operations, accounts for around 30% of the total electricity consumption in U.S.A, thereby being proposed advanced technologies to reduce electricity consumption. When the fluctuation of the compressed airflow rate is small, the system stability is increased followed by the reduction of the electricity consumption which results in the efficient design of the energy system. In the statistical analysis, the normal distribution, log normal distribution, gamma distribution or the like are generally used to identify system characteristics. However a single distribution may not fit well the data with long tail, representing sudden air flow rate especially in extremes. In this paper, authors decouple the compressed airflow rate into two parts to present a mixture of distribution function and suggest a method to reduce the electricity consumption. This reduction stems from the fact that a general pareto distribution estimates more accurate quantile value than a gaussian distribution when an airflow rate exceeds over a large number.