• Title/Summary/Keyword: Plant O&M

Search Result 856, Processing Time 0.028 seconds

Comparative Studies Of the $UV/H_2O_2,\;UV/TiO_2/H_2O_2$ and Photo-Fenton Oxidation for Degradation of Citric Acid ($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법에 의한 Citric Acid의 분해효율 비교)

  • Seo, Min-Hye;Cho, Soon-Haing;Ha, Dong-Yun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2006
  • To establish the efficient treatment technology of chemical cleaning wastewater from power plant, several AOPs($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation) were investigated. Treatment efficiencies and the electrical energy requirements based on the EE/O parameter(the electrical energy, required per order of pollutant removal in $1m^3$ wastewater) were evaluated. TOC removal efficiencies of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation at the optimum conditions were 95.5%, 92.3%, 91.5%, respectively. The electrical energy requirements of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation were $11.26kWh/m^3,\;3.85kWh/m^3,\;0.799kWh/m^3$, respectively. From these results, it could be concluded that all of the three oxidation processes were effective for the degradation of citric acid. Considering the treatment efficiency and economical aspect, photo-Fenton oxidation was the most efficient treatment process among the three processes tested.

QTL Mapping for Major Agronomic Traits across Two Years in Soybean(Glycine max L. Merr.)

  • Li, Wenxin;Zheng, Da-Hao;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • The agronomic traits, such as days to flowering and maturity, plant height, 100-seed weight and seed filling period, are quantitatively inherited and important characters in soybean(Glycine max L. Merr.). A total of 126 $F_5$ recombinant inbred lines(RILs) developed from the cross of PI 171451$\times$Hwaeomputkong were used to identify quantitative trait loci(QTLs) for days to flowering(FD), days to maturity(MD), plant height(PH), 100-seed weight(SW), number of branches(NB) and seed filling period(FP). A total of 136 simple sequence repeat(SSR) markers segregated in a RIL population were distributed over 20 linkage groups(LGs), covering 1073.9 cM of the soybean genome with the average distance between adjacent markers of 7.9 cM. Five independent QTLs were identified for FD, three for MD, two for PH, three for SW, one for NB and one for FP. Of these, three QTLs were related to more than two traits of FD, MD, PH, NB and FP and mapped near the same positions on LGs H and O. Thus, these traits could be correlated with biologically controlled major QTLs in this soybean RIL population.

  • PDF

DPPH Radical Scavenging Effect of the Aerial Parts of Fagopyrum esculentum and Isolation of Bioactive Flavonoids (메밀 지상부의 DPPH 라디칼 소거작용과 활성 플라보노이드의 분리)

  • Kim Sung-Ja;Kim Hyun-Joo;Park Jong-Cheol
    • Herbal Formula Science
    • /
    • v.12 no.1
    • /
    • pp.255-262
    • /
    • 2004
  • The inhibitory effect of the aerial parts of Fagopyrum esculentum on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical was examined. The n-butanol fraction from the methanol extract of title plant showed stronger inhibitory effect than other fractions on DPPH radical. Two flavonoids were isolated from n-butanol fraction having the potent activity and elucidated as quercetin-3-O-${\alpha}$-L-rhamnoside and quercetin-3-O-rutinoside on the basis of spectral evidence. The $IC_{50}$ values of these compounds on DPPH radical were 6.56 ${\mu}M$ and 8.37 ${\mu}M$, respectively.

  • PDF

Ginsenoside R $b_2$ and Rc Formation and Inorganic Elements Uptake in Ginseng Hairy Roots Cultures (인삼모상근 배양에서 Ginsenoside R $b_2$ 및 Rc 생성과 무기이온 흡수)

  • 양덕조;윤길영;최규명;유승희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.461-468
    • /
    • 2000
  • For the enhancement of ginsenoside production in hairy roots cultures of Panax ginseng, the uptake rate of inorganic elements and ginsenoside contents were investigated by different concentrations of about phosphorus (P $O_{4}$$^{[-10]}$ ) and nitrogen (N $H_{4}$$^{+}$, N $O_{3}$$^{[-10]}$ ) sources. According to increased phosphorus and nitrogen sources, the uptake rate of $Mg^{2+}$ and F $e^{2+}$ in ginseng hairy roots were significantly increased. The uptake rate of F $e^{2+}$ in 5.15 mM N $H_{4}$$^{+}$ was higher at 47.5% than that in 20.6 mM, whereas that of C $u^{2+}$ in 10.3 mM were higher at 123.1% than that in 41.2 mM. These results indicated that phosphorus and nitrogen sources act not only elevated growth of hairy roots but also the uptake-enhancement of the irons and other ions. The optimum concentration of phosphorus and nitrogen sources for the contents of free sugars were different to kinds of free sugars. The optimum concentration of phosphorus and nitrogen sources for the ginsenoside formation in ginseng hairy roots cultures were highest at the most low concentration of all. The contents of ginsenoside-R $b_2$and -Rc in 0.31 mM P $O_{4}$$^{[-10]}$ were increased to 44.7% and 29.9% than that in 0.62 mM P $O_{4}$$^{[-10]}$ , respectively. The contents of ginsenoside-R $b_2$ and -Rc in 5.15 mM N $H_{4}$$^{+}$ were increased to 21.7% and 31.9% than that in 10.30 mM N $H_{4}$$^{+}$, respectively. The contents of ginsenoside-R $b_2$and -Rc in 4.7 mn N $O_{3}$$^{[-10]}$ were also increased to 17.6% and 25.5% than that in 9.4 mM N $O_{3}$$^{[-10]}$ , respectively. These results indicate that enhancement of the ginsenoside formation in ginseng hairy roots was feasible by new medium modulation of concentration of phosphorus and nitrogen sources.rogen sources.

  • PDF

N Top-Dressing and Rice Straw Application for Low-Input Cultivation of Transplanted Rice in Japan

  • Cho, Y.S.;Kobata, T.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.273-278
    • /
    • 2002
  • An efficient low-input system (LIS) for fertiliser use in rice cultivation is necessary to reduce fossil energy use and pollution. Japanese people like Japonica rice, especially cv. Koshihikari. However, it has very low lodging resistance in Japanese weather condition. Our objective was to develop a LIS with the minimum sacrifice of grain yield in rice. Koshihikari was grown using conventional fertilization as a control (CON) with 4 g N $m^{-2}$., 8g $P_2$ $O_{5}$ $m^{-2}$ and 8 g $K_2$O $m^{-2}$ as a basal fertilizer dressing. It was compared with a low fertilizer treatment (LF) with only 4 g $P_2$ $O_{5}$ $m^{-2}$ as a basal dressing in the first year and no basal phosphorus fertilizer in the second year. Chopped rice straw was incorporated into the soil before the cropping season in both years. Fertilizer of 4 g N $m^{-2}$ was top-dressed at 15 days before heading in CON plots and 30 days before heading in LF plots in both years. Lodging was significantly less in LF than in CON plots, however, no rice straw effect was found in low fertilized condition. Grain yields in LF plots were reduced by 15-16% below those of CON plots. Lower yields in LF plots were associated with a reduced number of spikelets per unit area. However, big spikelet size was acquired in LF by 10 days earlier N top dressing than CON plots. A close relationship was found between spikelet numbers and N content of the plant at heading, and between grain yield or shoot dry weight and N content of the plant at maturity. Regardless of the fertilizer application methods, N use efficiency for the number of spikelets, final total dry matter and grain yield was essentially identical among fertilizer treatments. The reduced growth and yield in the LF plots resulted from low absorption of nitrogen. Conclusively, LIS can drastically reduce chemical fertilizer use and facilitate harvest operations by reducing lodging with some yield reduction..

Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants

  • Al-Quraan, Nisreen A.;Locy, Robert D.;Singh, Narendra K.
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • Arabidopsis mutants with T-DNA insertion in seven calmodulin genes (CAM) were used to determine the specific role of CAM in the tolerance of plants to oxidative stress induced by paraquat and hydrogen peroxide ($H_2O_2$) treatments. Arabidopsis calmodulin mutants (cam) were screened for seedling growth, seed germination, induced oxidative damage, and levels of ${\gamma}$-aminobutyric acid (GABA) shunt metabolites. Only the cam5-4 and cam6-1 mutants exhibited an increased sensitivity to paraquat and $H_2O_2$ during seed germination and seedling growth. In response to treatments with $3{\mu}M$ paraquat and 1 mM $H_2O_2$, only the cam5-4, cam6-1 mutants showed significant changes in malonaldehyde (MDA) levels in root and shoot tissues, with highly increased levels of MDA. In terms of the GABA shunt metabolites, GABA was significantly elevated in root and shoot tissues in response to the paraquat treatments in comparison to alanine and glutamate, while the levels of all shunt metabolites increased in root tissue but not in the shoot tissue following the $H_2O_2$ treatments. GABA, alanine and glutamate levels were significantly increased in root and shoot of the cam1, cam4, cam5-4, and cam6-1 mutants in response to paraquat (0.5, 1 and $3{\mu}M$), while they were increased only in the root tissue of the cam1, cam4, cam5-4, and cam6-1 mutants in response to $H_2O_2$ (200 and $500{\mu}M$, 1 mM). These data show that the cam5-4 and cam6-1 mutants were sensitive to the induced oxidative stress treatments in terms of seed germination, seedling growth, and oxidative damage. The accumulation of GABA shunt metabolites as a consequence of the induced oxidative stress treatments (paraquat and $H_2O_2$ treatments) suggests that the GABA shunt pathway and the accumulation of GABA metabolites may contribute in antioxidant machinery associated with reactive oxygen species and in the acquisition of tolerance in response to induced oxidative stress in Arabidopsis seedlings.

Inhibitory effect of Plant Essential Oils on Malassezia pachydermatis

  • Lee, Jeong-Hyun;Lee, Jae-Sug
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.184-188
    • /
    • 2010
  • Effect of the plant essential oils on the growth of Malassezia pachydermatis was evaluated and the essential oils of Ocimum basilicum L., Melaleuca alternifolia (Maid. & Bet.) Cheel, and Rosa damascene Mill. were the most active against M. pachydermatis and their activity were high than that of itraconazole at 2 mg/mL. The major constituents of the three oils by GC-MS analysis were linalool (21.83%) and estragole (74.29%) for O. basilicum, a-terpinolene (17.96%) and terpinen-4-01 (45.54%) for M. alternifolia, and a-citronellol (59.98%) and geraniol (27.58%) for R. damascene. Results showed that these selected three oils could be effective toward controlling M. pachydermatis opportunistic infections.

Studies on the fungicidal action and its physico-chemical properties of phenylmercuric 8-oxyquinolinate (Phenylmercuric 8-oxyquinolinate의 살균작용 및 이의 이화학적 성질에 관한 연구)

  • Sohn C. Y.;Kang I. M.;Lee S. H.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.11-18
    • /
    • 1965
  • In order to investigate the fungicidal activities against various plant pathogenes, diminishing effect of plant transpiration, phytotoxicities, vapor effect and the rate of reduction by ultraviolet rays of phenylmercuric 8-oxyquinolinate(P.M.Q), this experiments were undertaken under various laboratory conditions. 1. Inhibitory activity on the spore germination of this chemical was shown less effective than that of P.M.A..(Table 2, Table 3, Table 4, Table 5 and Table 6) Also, P.M.Q. was resulted a somewhat higher inhibitory activity on the hyphae growth than P.M.A. (Table 7). 2. In the diminishing effect of plant transpiration, 8-hydroxyquinoline sulfate(oxine sulfate) was more strong inhibitory at first than P.M.Q., while, at last, P.M.Q. was more strong inhibitory in comparison with oxine sulfate(Table 8, Fig. 1 and Table 9). 3. P.M.Q. was shown less injury on the germination of rice plant seeds and the emergence of their roots than P.M. A.(Table 10). Injuries was not observed on the rice seedlings and soy-bean seedlings sprayed with 40 ppm of this chemical. 4. P.M.A. had more inhibitory effects on the mycelial growth of phytopathogenes than P.M.Q. on the vapor effect (Table 11, Fig. 2). 5. Biological activity and chemical decomposition rate of P.M.A. were greatly reduced by exposure of this compound to ultraviolet rays. But, P.M.Q. was only slightly affected by similar treatment(Table 12, Fig. 3, Table 13 and Fig. 4). From the above results, this chemical will be a promising fungicide adding fungitoxicities against various phytopatho genes, diminishing effect of plant transpiration and physico-stability.

  • PDF

Alleviating Effects of Nitric Oxide on Cadmium Toxicity in White Poplar (Populus alba)

  • Semsettin Kulac;Yakup Cikili;Halil Samet;Ertugrul Filiz
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Cadmium (Cd) is non-essential heavy metal that negatively affects plant metabolism. Nitric oxide (NO) is an increasingly important molecule for plant metabolism that makes signaling. In this study, it was aimed to investigate the alleviating effect of sodium nitroprusside (SNP) application as NO donor in white poplar (Populus alba) under Cd stress conditions. SNP and without SNP treatments increased the Cd accumulation in root tissue. While photosynthetic pigments (Chl a, Chl b, Chl a+b, and carotenoid) content decreased by only Cd application, SNP+Cd application decreased the rate of photosynthetic pigments reduction. When the results of Cd and Cd+SNP applications were evaluated for mineral (Fe, Zn, Mn and Cu) uptake, it was found that the positive effect of SNP was heterogeneously affected. Depending on SNP application, it was found that malondialdehyde (MDA) amount decreased in leaf in 100 µM Cd applications while hydrogen peroxide (H2O2) amount decreased in 100 and 500 µM Cd applications. When antioxidant enzyme activities were examined, it was found that catalase (CAT) and ascorbate peroxidase (APX) enzyme activities increased with 100 µM SNP applications under all Cd applications. As a result, it was found that SNP application under Cd stress generally supports physiological processes positively in white poplar, suggesting that NO molecule plays important alleviating roles in plant metabolism.

Antioxidative Activities of Whole Plant Extracts of Solanum nigrum L. (까마중(Solanum nigrum L.) 전초 추출물의 항산화 활성)

  • Seong, Joon Seob;Kim, Kyoung Mi;Suh, Ji Young;Ha, Ji Hoon;Park, Soo Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.781-788
    • /
    • 2015
  • In this study, the antioxidative effects of 50% ethanol extract, ethylacetate fraction and aglycone fraction obtained from dried whole plant of Solanum nigrum L. were investigated. The free radical scavenging activities ($FSC_{50}$) were $215.46{\mu}g/mL$, $42.43{\mu}g/mL$ and $52.28{\mu}g/mL$, respectively. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system were $25.25{\mu}g/mL$, $7.05{\mu}g/mL$ and $6.25{\mu}g/mL$, respectively. 50% ethanol extract and aglycone fraction showed the cellular protective effect against $^1O_2$ induced cellular damage of rabbit erythrocytes at $5{\sim}25{\mu}g/mL$, but not at high concentrations. These results indicated that S. nigrum extract/fractions could be used as an antioxidative agent. However, it could induce cellular damage at high concentrations. In conclusion, a special caution is required to use S. nigrum extracts as a cosmetic ingredient.