• Title/Summary/Keyword: Plant O&M

Search Result 856, Processing Time 0.027 seconds

Effect of Alkali Metal Ions on Alkaline Ethanolysis of 2-Pyridyl and 4-Pyridyl Benzoates in Anhydrous Ethanol

  • Lee, Jae-In;Kang, Ji-Sun;Kim, Song-I;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2929-2933
    • /
    • 2010
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured for nucleophilic substitution reactions of 2-pyridyl benzoate 5 with alkali metal ethoxides (EtOM, M = Li, Na, K) in anhydrous ethanol. The plots of $k_{obsd}$ vs. $[EtOM]_o$ are curved upwardly but linear in the excess presence of 18-crown-6-ether (18C6) with significant decreased $k_{obsd}$ values in the reaction with EtOK. The $k_{obsd}$ value for the reaction of 5 with a given EtONa concentration decreases steeply upon addition of 15-crown-5-ether (15C5) to the reaction medium up to ca. [15C5]/$[EtONa]_o$ = 1, and remains nearly constant thereafter, indicating that $M^+$ ions catalyze the reaction in the absence of the complexing agents. Dissection $k_{obsd}$ into $k_{EtO^-}$- and $k_{EtOM}$, i.e., the second-order rate constants for the reaction with the dissociated $EtO^-$ and the ion-paired EtOM, respectively has revealed that ion-paired EtOM is 3.2 - 4.6 times more reactive than dissociated $EtO^-$. It has been concluded that $M^+$ ions increase the electrophilicity of the reaction center through a 6-membered cyclic transition state. This idea has been examined from the corresponding reactions of 4-pyridyl benzoate 6, which cannot form such a 6-membered cyclic transition state.

Silica Nanoparticles Suppress the Root Rot of Panax ginseg from Ilyonectria mors-panacis Infection by Reducing Sugar Efflux into Apoplast

  • Abbai, Ragavendran;Ahn, Jong-Chan;Mohanan, Padmanaban;Mathiyalagan, Ramya;Gokulanathan, Anandapadmanaban;Kim, Yu-Jin;Kim, Yoen-Ju;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.59-59
    • /
    • 2018
  • Panax ginseng Meyer (Korean ginseng) is in the spotlight of Oriental medicine and is proclaimed as the king of medicinal plants owing to its adaptogenic characteristics. Ginseng root rot is a devastating disease caused by the fungus, Ilyonectria mors-panacis that generally attacks younger roots (~2 years), leading to defects in root quality, ginsenoside accumulation and also life cycle of the plant. Hence, there is an indispensable need to develop strategies resulting in tolerance against ginseng root rot. In the present study, we evaluated the effect of silica nanoparticles(N-SiO2) in Panax ginseng during I. mors-panacis infection. Long term analysis (30 dpi) revealed a striking 50% reduction in disease severity index upon 1mM and 2mM treatment of N-SiO2. However, N-SiO2 did not have any direct antifungal activity against I. mors-panacis. Membrane bound sugar efflux transporter, SWEET (Sugars Will Eventually be Exported Transporters) was identified in ginseng and as expected, its expression was suppressed upon N-SiO2 treatment in the root rot pathosystem. Furthermore, the total and reducing sugars in the apoplastic fluid clearly revealed that N-SiO2 regulates sugar efflux into apoplast. In a nut shell, N-SiO2 administration induces transcriptional reprogramming in ginseng roots, leading to regulated sugar efflux into apoplast resulting in enhanced tolerance against I. mors-panacis.

  • PDF

Influences of Site-specific N Application on Rice Grain Yield and Quality in Small Size Paddy Field (소규모 경작지에서 질소 변량시비가 벼 수량 및 품질에 미치는 영향)

  • Choi Min-Gyu;Choi Won-Young;Park Hong-Kyu;Nam Jeong-Kwon;Back Nam-Hyun;Lee Jun-Hee;Kim Sang-Su;Kim Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.369-378
    • /
    • 2006
  • For precision farming the influences of site-specific N application on rice grain yield and quality were investigated in 0.5 ha paddy field from 2001 to 2003. In pre-cultured soil, EC, O.M., total nitrogen, phosphate and potassium content showed high spatial variation, ranging from 11.63 to 52.03% of coefficient of variation, while that of pH was relatively low. In rice growth characteristics, tiller number at panicle formation stage was more than 10% in coefficient of variation, but plant height, SPAD figure at panicle formation stage and milled rice yield, protein content in brown rice showed less below 10%. Spatial dependence was over 0.60 in pH, total nitrogen, phosphate and potassium in pre-cultured soil and was over 0.50 in plant height, SPAD figure and protein content, while it was below 0.22 in tiller number at panicle formation. The range of spatial dependence was longer than 20m in all factors except for protein content in brown rice. Basal dressing nitrogen rate was positively correlated with PH, $SiO_{2}$, plant height and SPAD figure. Nitrogen fertilization rate at panicle formation stage was positively correlated with EC and O.M.. Protein content in brown rice was positively correlated with $SiO_{2}$ in pre-cultured soil. Milled rice yield was positively correlated with plant height, tiller number and SPAD figure at panicle formation stage.

Effect of Silicon Source and Application Method on Growth of Kalanchoe 'Peperu' (규산염 종류와 적용방법이 칼랑코에 '페페루'의 생육에 미치는 영향)

  • Son, Moon-Sook;Oh, Hye-Jin;Song, Ju-Yeon;Lim, Mi-Young;Sivanesan, Iyyakkannu;Jeong, Byoung-Ryong
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • The effect of different source silicon ($CaSiO_3$, $K_2SiO_3$, and $NaSiO_3$) and their application methods (foliar application and subirrigation) on the growth of potted kalanchoe was investigated. Rooted terminal cuttings of Kalanchoe blossfeldiana 'Peperu' were transplanted into 10.5 cm plastic pots containing a commercial growing medium. Then, a nutrient solution, containing 0 or $50mg{\cdot}L^{-1}$ Si as $K_2SiO_3$, $Na_2SiO_3$, or $CaSiO_3$ and adjusted to EC 1.4-$1.6mS{\cdot}cm^{-1}$ and pH 6.0, was supplied through subirrigation along with the nutrient solution or by a foliar application. Plants were grown in a glasshouse under a mean temperature of $23^{\circ}C$ and RH of 70-80%. After 12 weeks of cultivation, plant growth characteristics and leaf tissue contents of P, K, Ca, Mg, Na, S, and Si were measured. Both subirrigational supply and foliar application of Si decreased the plant height and flower stem length. However, the plant condition in the foliar application resulted in disease-like soft rot on the leaf. Among three silicon sources tested, $CaSiO_3$ supplied through a subirrigation system increased shoot tissue contents of Si and chlorophyll as compared to the $Na_2SiO_3$ or $K_2SiO_3$ treatment. Shoot tissue contents of Ca, K, and Na increased when the plant was supplied with $CaSiO_3$, $K_2SiO_3$, and $Na_2SiO_3$, respectively. Subirrigational supply of $K_2SiO_3$ and $NaSiO_3$ decreased the shoot tissue contents of Ca and Mg, and K and Ca, respectively. Therefore, $CaSiO_3$ supplied through a subirrigation system could improve plant quality of kalanchoe 'Peperu' making compact potted plants.

Anti-Inflammatory Activity of Compounds from the Whole Plant of Patrinia saniculaefolia

  • An, Ren-Bo;Na, Min-Kyun;Min, Byung-Sun;Chang, Hyeun-Wook;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.90-94
    • /
    • 2011
  • An in vitro bioassay-guide revealed that the methanol (MeOH) extract of the whole plant of Patrinia saniculaefolia (Valerianaceae) showed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin $D_2$ ($PGD_2$) and leukotriene $C_4$ ($LTC_4$) in mouse bone marrow-derived mast cells (BMMCs). Phytochemical study of the MeOH extract of this plant led to the isolation of twelve compounds; ${\beta}$-farnesene (1), squalene (2), nardostachin (3), patridoid I (4), patridoid II (5), patridoid II-A (6), oleanolic acid (7), oleanonic acid (8), 23-hydroxyursolic acid (9), oleanolic acid 3-O-${\alpha}$-L-arabinopyranoside (10), oleanolic acid 3-O-${\beta}$-D-glucopyranoside (11), oleanolic acid 3-O-[${\beta}$-D-xylopyranosyl-(1${\rightarrow}$3)-${\beta}$-D-(6-O-butyl)glucuronopyranoside] (12). Among the compounds, 4 and 5 strongly inhibited both the COX-2-dependent $PGD_2$ generation with $IC_{50}$ values of 8.7 and 13.6 ${\mu}M$, respectively, and the generation of $LTC_4$ in the 5-LOX dependent phase with $IC_{50}$ values of 41.7 and 46.9 ${\mu}M$, respectively, which suggest that the anti-inflammatory activity of P. saniculaefolia might occur in part via the inhibition of both $PGD_2$ and $LTC_4$ generation by 4 and 5.

Effect of Transcriptional Terminator Sequences on Recombinant Protein Expression from Drosophila melanogaster S2 Cell (전사 종결 염기 서열이 Drosophila melanogaster Schneider line 2 세포에서 외래 단백질의 발현에 미치는 영향)

  • Hwang, In-Sook;Park, Jong-Hwa;Lee, Youn-Hyung;Yoon, Jae-Seung;Baek, Kwang-Hee;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.211-214
    • /
    • 2001
  • Utilizing the foreign gene expression system of Drosophila melanogaster Schneider line 2(S2) cell, the degree of transient protein and mRNA expression was examined with different terminators. In the case of transient expression, the expression level of green fluorescent protein(GFP) was the highest when the transfection agent was eliminated and then cultivated for 36 to 48 hr. The terminators(SV40 p(A), SV40 small T-antigen and human gastrin 3'UTR) of the expression vector system were each cloned with endostatin; thereafter, the expression levels of the endostatin and its mRNA were compared. When the expression levels of endostatin were compared 36 hr after transfection, the SV40 p(A) terminator showed the highest expression level of endostatin and its mRNA.

  • PDF

Prediction of Maximum Fly Ash Conveying Capacity of Fly Ash System in a Power Plant (발전 보일러용 비회 이송설비에서 최대 비회 이송량 예측)

  • Jin, Kyung-Yong;Moon, Yoon-Jae;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study presents prediction of maximum fly ash conveying capacity of fly ash system in a power plant. The mixture ratio and pressure drop characteristics of air-fly ash flow in piping system are not well understood due to the complexity of particle motion mechanism. In this paper, the researcher investigated the optimum mixture ratio when the pressure drop of fly ash conveying system is equal to maximum static pressure of displacement fly ash transport blower and the capacity of fly ash transport according to the optimum mixture ratio by experimenting the fly ash conveying system of domestic D coal thermal power plants, which is currently in operation. The experiment results showed that the maximum fly ash conveying capacity of fly ash system were founded under the condition of maximum air volume 5,040 m3/h, static pressure of trip condition 1,163 mmH2O. In addition, it was predicted maximum mixture ratio of the air-fly ash was 8.66 and maximum capacity of fly ash conveying was 52,600 kg/h under these conditions.

  • PDF

Antioxidant Compounds from the Root Bark of Hibiscus syriacus

  • Lee, Sang-Jun;Yun, Young-Sook;Lee, In-Kyoung;Ryoo, In-Ja;Yun, Bong-Sik;Yoo, Ick-Dong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.110-117
    • /
    • 1999
  • A new lignan named as hibiscuside, (+) pinoresinol 4-O-[-glucopyranosyl (12) -rhamnoside] (1), and a known lignan, syringaresinol (2) were isolated from the root bark of Hibiscus syriacus together with two feruloyltyramines (3,4) and three known isoflavonoids (5,6,7). The structures of these compounds have been established on the basis of their NMR, Mass, UV spectra. Among these phenolic compounds,6-O-acetyl daidzin (5), 6-O- acetyl genistin (6), and 3-hydroxy daidzein (7) with IC50 values of 8.2, 10.6, and 4.1 M, respectively, significantly inhibited lipid peroxidation in rat liver microsomes Hibiscuside (1), E and Z-N-feruloyl tyramines (3,4) exhibited moderate antioxidant activity.

  • PDF

Prolyl Endopeptidase Inhibitory Activity of 6-O-Palmitoyl L-Ascorbic Acid

  • Park, Yoon-Seok;Paik, Young-Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.110-113
    • /
    • 2006
  • Prolyl endopeptidase (PEP, EC 3.4.21.26, also referred to as prolyl oligopeptidase) degrades proline containing, biologically active neuropeptides such as vasopressin, substance P and thyrotropin-releasing hormone by cleaving peptide bonds on carboxyl side of prolyl residue within neuropeptides of less than 30 amino acids. Evaluation of PEP levels in postmortem brains of Alzheimer's disease patients revealed significant increases in PEP activity. Therefore, a specific PEP inhibitor can be a good candidate of drug against memory loss. Upon our examination for PEP inhibitory activity from micronutrients, ascorbic acid (vitamin C) showed small but significant PEP inhibition (13% PEP inhibition at $8{\mu}g{\cdot}ml^{-1}$). Palmitic acid showed almost no PEP inhibition. However, 6-O-palmitoyl ascorbic acid ($\underline{1}$) showed 70% PEP inhibition at $8{\mu}g{\cdot}ml^{-1}$ indicating that hydrophobic portion of the compound $\underline{1}$ may facilitate the inhibitory effect. $IC_{50}$ value of compound $\underline{1}$ was $12.6{\pm}0.2{\mu}M$. The primary and secondary Lineweaver Burk and Dixon plots for compound $\underline{1}$ indicated that it is a non-competitive inhibitor with inhibition constant (Ki) value of $23.7{\mu}M$.

Studies of Growth according to the Concentration of Mineral Elements of Medium in Cyanophyte SG63 (배양액의 염도에 따른 남조식물 (SG 63)의 생장 연구)

  • 김미경
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 1992
  • The characteristic of Cyanophyte genus SG63 is similar to that of Aphanot hece sp. The optimal growth was found with the concentration of NaCI and $MgSO_4{\cdot}7H_2O$ on the culture medium. The most optimal condition is 56%0 of NaCl (S4 medium) and 20%0 of $MgSO_4{\cdot}7H_2O$ (M2 medium). The synthesis of chlorophyll a, phycocyanin and soluble proteins is affected by the concentration of the two mineral elements in culture. Especially, the content of chlorophyll a and phycocyanin decreases on the most highly saline medium. The identified principal carotenoids are ${\beta}-carotene$, echinenone, zeaxanthin and myxoxanthophyll. The rates of concentration of protein/chlorophyll a and phycocyanin/chlorophyll a are low on the S4 medium. Inversely, these rates are the highest on the M2 medium. Accordingly, the high concentration of $MgSO_4{\cdot}7H_2O$ provoke the synthesis of phycocyanin and total proteins.oteins.

  • PDF