• Title/Summary/Keyword: Plant Metabolite

Search Result 200, Processing Time 0.024 seconds

Characterization of Putative Capsaicin Synthase Promoter Activity

  • Kim, June-Sik;Park, Minkyu;Lee, Dong Ju;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.331-339
    • /
    • 2009
  • Capsaicin is a very important secondary metabolite that is unique to Capsicum. Capsaicin biosynthesis is regulated developmentally and environmentally in the placenta of hot pepper. To investigate regulation of capsaicin biosynthesis, the promoter (1,537 bp) of pepper capsaicin synthase (CS) was fused to GUS and introduced into Arabidopsis thaliana (Col-0) via Agrobacterium tumefaciens to produce CSPRO::GUS transgenic plants. The CS was specifically expressed in the placenta tissue of immature green fruit. However, the transgenic Arabidopsis showed ectopic GUS expressions in the leaves, flowers and roots, but not in the stems. The CSPRO activity was relatively high under light conditions and was induced by both heat shock and wounding, as CS transcripts were increased by wounding. Exogenous capsaicin caused strong suppression of the CSPRO activity in transgenic Arabidopsis, as demonstrated by suppression of CS expression in the placenta after capsaicin treatment. Furthermore, the differential expression levels of Kas, Pal and pAmt, which are associated with the capsaicinoid biosynthetic pathway, were also suppressed in the placenta by capsaicin treatment. These results support that capsaicin, a feedback inhibitor, plays a pivotal role in regulating gene expression which is involved in the biosynthesis of capsaicinoids.

Control Effects of Indole Isolated from Xenorhabdus nematophila K1 on the Diseases of Red Pepper (Xenorhabdus nematophila K1 유래물질 인돌의 고추 병해 방제 효과)

  • Jeon, Mi-Hyeon;Cheon, Won-Su;Kim, Yong-Gyun;Hong, Yong-Pyo;Yi, Young-Keun
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Indole compound is a bacterial metabolite synthesized and released by an entomopathogenic bacterium, Xenorhabdus nematophila K1. The antibiotic activity was evaluated against plant pathogens, such as Phytophthora blight and anthracnose of red pepper. Indole significantly suppressed mycelial growth of Phytophthora blight and anthracnose pathogens. Under natural sunlight conditions, indole maintained the antifungal activity for at least sixty days. The activity was not affected under the condition of soil-water. When the indole suspension was applied to surface soil before transplanting of red pepper seedlings and was then regularly sprayed to the foliage of the plants with ten days interval, it resulted in significant reduction of the disease occurrences (Phytophthora blight, anthracnose, soft rot, and black mold) by about 30%. These results suggest that indole can be used to control Phytophthora blight and anthracnose of red pepper.

The Use of qNMR for Quality Control of Coumarin-based Pharmaceuticals and Plant Medicines

  • Crocoli, Luana C.;Molon, Vinicius B.;Moura, Sidnei
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • The Coumarin (1,2-benzopyrone) is the main secondary metabolite of Mikania laevigata Sch. Beep ex Baker and Mikania glomerata Spreng., which are popularly known as guaco. These plants have been used mainly in traditional medicine in the treatment of respiratory diseases because their bronchodilator effect. However, there are around 200 species of Mikania, which are quite similar in appearance. From these, only M. leavigata and M. glomerata have high concentrations of coumarins. In this line, the falsification of products Mikania based has been frequent. In this sense, this work demonstrated the application of the easy, fast, e not destructive method based in Nuclear Magnetic Resonance in quantitative mode (qNMR) for the determination of coumarin in both commercial and homemade guaco products. Thus, in the first step the compounds were extract from guaco leaves and syrups using chloroform (CHCl3), with or without ultrasound. About the method, was linear with a R2 = 0.9947 for 1,2-benzopyrone, with detection and quantification limits with were 0.11 and 0.36 mg mL-1 respectively. In the same line, the method was safe with RSD <0.3% and with recovery ranging from 93-101%. To confirm the applicability of the method, in the last step was applied to 10 real samples (6 from leaves and 4 from syrups). The content of the coumarin in the leaf extract ranged from 0.62 to 1.30 mg mL-1. For syrups I, II and IV, the content of coumarin was in accordance with the manufacturers. However, for de Syrup III, the concentration was 155% higher. In summary, the qNMR is a rapid method with minimal sample preparation that can be used to quantify coumarin in home-made plant extracts as well as in commercial samples as syrup for instance. This method is applicable for quality control of different plants-based products.

Metabolic profiling reveals an increase in stress-related metabolites in Arabidopsis thaliana exposed to honeybees

  • Baek, Seung-A;Kim, Kil Won;Kim, Ja Ock;Kim, Tae Jin;Ahn, Soon Kil;Choi, Jaehyuk;Kim, Jinho;Ahn, Jaegyoon;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.141-151
    • /
    • 2021
  • Insects affect crop harvest yield and quality, making plant response mechanisms to insect herbivores a heavily studied topic. However, analysis of plant responses to honeybees is rare. In this study, comprehensive metabolic profiling of Arabidopsis thaliana exposed to honeybees was performed to investigate which metabolites were changed by the insect. A total of 85 metabolites-including chlorophylls, carotenoids, glucosinolates, policosanols, tocopherols, phytosterols, β-amyrin, amino acids, organic acids, sugars, and starch-were identified using high performance liquid chromatography, gas chromatography-mass spectrometry, and gas chromatography-time-of-flight mass spectrometry. The metabolite profiling analysis of Arabidopsis exposed to honeybees showed higher levels of stress-related metabolites. The levels of glucosinolates (glucoraphanin, 4-methoxyglucobrassicin), policosanols (eicosanol, docosanol, tricosanol, tetracosanol), tocopherols (β-tocopherol, γ-tocopherol), putrescine, lysine, and sugars (arabinose, fructose, glucose, mannitol, mannose, raffinose) in Arabidopsis exposed to honeybees were higher than those in unexposed Arabidopsis. Glucosinolates act as defensive compounds against herbivores; policosanols are components of plant waxes; tocopherols act as an antioxidant; and putrescine, lysine, and sugars contribute to stress regulation. Our results suggest that Arabidopsis perceives honeybees as a stress and changes its metabolites to overcome the stress. This is the first step to determining how Arabidopsis reacts to exposure to honeybees.

Comparative antiplasmodial activity, cytotoxicity, and phytochemical contents of Warburgia ugandensis stem bark against Aspilia africana wild and in vitro regenerated tissues

  • Denis Okello;Jeremiah Gathirwa;Alice Wanyoko;Richard Komakech;Yuseong Chung;Roggers Gang;Francis Omujal;Youngmin Kang
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.97-107
    • /
    • 2023
  • Malaria remains to be one of the most severe global public health concerns. Traditionally, Aspilia Africana and Warburgia ugandensis have been used to treat malaria in several African countries for millennia. In the current study, A. africana calli (AaC), A. africana in vitro roots (AaIR), A. africana wild leaf (AaWL), and W. ugandensis stem bark (WuSB) were dried and pulverized. Fourier transform near-infrared spectroscopy was used to analyze the powdered samples, while 80% ethanolic extracts of each sample were assayed for antiplasmodial activity (against Plasmodium falciparum strains DD2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive)) and cytotoxicity. WuSB showed the highest antiplasmodial activity (IC50 = 1.57 ± 0.210 ㎍/ml and 8.92 ± 0.365 ㎍/ml against P. falciparum 3D7 and DD2, respectively) and selectivity indices (43.90 ± 7.914 and 7.543 ± 0.051 for P. falciparum 3D7 and DD2, respectively). The highest total polyphenolic contents (total phenolic and flavonoid contents of 367.9 ± 3.55 mg GAE/g and 203.9 ± 1.43 mg RUE/g, respectively) were recorded for WuSB and the lowest were recorded for AaC. The antiplasmodial activities of the tested plant tissues correlated positively with total polyphenolic content. The high selectivity indices of WuSB justify its traditional applications in treating malaria and present it as a good candidate for discovering new antimalarial compounds. We recommend elicitation treatment for AaIR, which showed moderate antiplasmodial activity against P. falciparum DD2, to increase its secondary metabolite production for optimal antimalarial activity.

Phytotoxicity of Endophytic Fungi and Characterization of a Phytotoxin Isolated from Gliocladium catenulatum from Pinus densiflora (식물내생곰팡이의 제초활성 검정 및 소나무에서 분리한 Gliocladium catenulatum이 생산하는 제초활성 물질의 특성 규명)

  • Choi, Gyung-Ja;Park, Joong-Hyeop;Kim, Heung-Tae;Lee, Seon-Woo;Choi, Jung-Sup;Hong, Kyung-Sik;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Mycology
    • /
    • v.32 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • This study was conducted to discover new phytotoxins which may be used as lead molecules for the development of new herbicides. A total of 187 endophytic fungi were isolated from 11 plant species, which were collected from 8 locations in Korea. Their herbicidal activities were screened in vivo by herbicidal and duckweed bioassays after they were cultured in potato dextrose broth and rice solid media. Both fermentation broth and solid culture extract of Gliocladium catenulatum F0006 isolated from red pine (Pinus densiflora) showed 70% herbicidal activity only against cocklebur (Xanthium strumarium) out of the 10 weeds tested. Solid culture extract of F0034 isolated from arrowroot (Pueraria thunbergiana) exhibited 20 to 100% herbicidal activities against all of the weeds. Especially, shattercane (Sorghum bicolor), barnyardgrass (Echinochloa crus-galli), large crabgrass (Digitaria sanguinalis), and fall pauicum (Panicum dichtomiflorum) were sensitive to the solid culture extract of F0034. In addition, solid culture extract of F0043 isolated from red pine displayed 20% to 70% herbicidal activities only against 5 grass species, but not against 5 broad-leaf plant species. On the other hand, as the results of duckweed assay, 8 fermentation broths showed 100% growth inhibitory activity at concentrations less than 5.0% of culture supernatants and 12 solid cultures had a potent inhibitory activity against duckweed growth. A toxic metabolite was purified from the solid cultures of G. catenulatum F0006 by repeated column chromatography and bioassay. It caused a phytotoxic syndrome only on cocklebur out of the 10 weeds tested; it completely killed cocklebur seedlings at $500\;{\mu}g/ml$ and showed 85% herbicidal activity against cocklebur at $100\;{\mu}g/ml$. The molecular weight of the toxic metabolite is 238 daltons and its structure determination is underway.

Differential Induction of Protein Expression and Benzophenanthridine Alkaloid Accumulation in Eschscholtzia californica Suspension Cultures by Methyl Jasmonate and Yeast Extract

  • Cho, Hwa-Young;Rhee, Hong-Soon;H. Yoon, Sung-Yong;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • Methyl jasmonate (MJ) and yeast extract (YE) induce protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cell cultures. One hundred ${\mu}M$ MJ primarily induced dihydrosanguinarine $(509.0{\pm}7.4mg/l)$ ; 0.2g/l YE induced sanguinarine $(146.8{\pm}3.8mg/l)$ and an unknown compound. These results occur because dihydrobenzophenanthridine oxidase (DHBO) is induced by YE and not by MJ. YE and chitin (CHI) had similar effects on sanguinarine production and DHBO expression. Differential induction of secondary metabolites was shown in E. californica suspension cultures and the expression of proteins confirmed the metabolite results. Furthermore, treatment by various oligosaccharides helped us to understand the elicitation effect of YE in signal transduction pathways.

인삼 사포닌 생합성의 기능 유전체 연구

  • Choe Dong Uk
    • 한국인삼전략화협의회:학술대회논문집
    • /
    • v.2003 no.09
    • /
    • pp.54-63
    • /
    • 2003
  • "Korea ginseng (Panax ginseng C.A Meyer) is an important medicinal plant. Its root has been used as an herbal medicine that provides resistance to stress and disease, and prevents exhaustion since the ancient time. Ginsenosides, glycosylated triterpene (saponin), are considered to be the main active compounds of the ginseng root. Despite of considerable commercial interests of ginsenosides, very little is known about the genes and their biochemical pathways for ginsenoside biosynthesis. This work will focus on the identification of genes involved in ginsenoside biosynthesis and the dissection of ginsenoside biosynthetic pathway using a functional genomics tool. Expression sequence tags (ESTs) provide a valuable tool to discovery the genes in secondary metabolite biosynthesis. We generated over 21,155 ginseng ESTs that is now sufficient to facilitate discovering the genes involved in ginsenoside biosynthesis such as oxidosqualene cyclase(OSC), cytochrome P450 and glycosyltransferase. With ESTs information, microarray technology will be used for the analysis of gene expression, and the identification of genes including transcription factors expressed in tissues under given experimental condition. Heterogous system such as yeast and plants will allow us to do the functional analysis. And selected ginseng hairy root which show variation in ginsenoside production will be used as a material for functional analysis of candidate gene. Functional genomics approach will successfully accelerate gene discovery, and also provide promises of metabolic engineering for the ginsenoside production."

  • PDF

Influences of CYP2E1 Gene Polymorphism on the Metabolism of Benzene (벤젠 대사에 있어서 CYP2E1유전자다형성의 영향)

  • 정효석;김기웅;장성근
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.325-330
    • /
    • 2002
  • In this study, the biochemical role of genetic polymorphism in modulating urinary excretion of benzene metabolite as phenol level has been investigated in 90 workers exposed to benzene in the petroleum refinery plant of Korea. The mean concentration of volatile benzene in the refinery environment was 0.042 mg/㎥ (SD, 0.069) and that of urinary phenol was 7.42 mg/g creatinine (SD, 11.3). The frequencies of CYP2E1 genotypes, namely CYP2E1$^*1$/$^*1$, CYP2E1$^*1$/$^*2$ and CYP2E1$^*2$/$^*2$ were 2.2% (2 subjects), 6.7% (G subjects) and 91.1% (85 subjects), respectively, and allele frequencies for CYP2E1$^*1$ and CYP2E1$^*2$ were 0.06 and 0.94. The airborne benzene concentration was significantly related to the concentration of phenol in urine (r = 0.640, p < 0.01). The urinary phenol level was significantly correlated with CYP2E1$^*2$/$^*2$ (r = 0.590, p < 0.05). The various biological (i.e. age and liver function parameters) or lifestyle factors (i.e. medication, smoking, alcohol and coffee intake), also taken into account as potential confounders, did not influence the correlation found. These results suggested that CYP2E1 genotypes might play an important role in the metabolism of benzene.

Effects of pH on the growth, total nitrogen, total phosphorus and organic compound removal in heterotrophic culture of Chlorella sorokiniana applied wastewater treatment (pH와 탄소원이 Chlorella sorokiniana의 heterotrophic 배양 및 하폐수고도처리능에 미치는 영향)

  • Park, Jeong-Eun;Cho, Yong-Beom;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.703-709
    • /
    • 2013
  • Among many microalgae cultivation types, heterotrophic culture with low cost carbon sources and energy saving culture method is crucial. A result of estimating the effects of pH on wastewater treatment using heterotrophic growing microalgae Chlorella sorokiniana shows that there was no difference in microalgae growth amount and nitrogen, phosphorus removal rate by wide range of pH(5 ~ 9). From pH 5 to 9, total nitrogen, phosphorous and glucose removal rates were 10.5 mg-N/L/d, 2 mg-P/L/d, 800 ~ 1000 mg/L respectively. This study reveals that C. sorokiniana cannot metabolite glycerol heterotrophically, however, glucose and acetate were proper carbon sources for growth and T-N, T-P and TOC removal. This research highlights the potential of heterotrophic microalgal growth with wastewater treatment plant with wide range of pH and carbon sources.