• Title/Summary/Keyword: Plant Growth Conditions

Search Result 1,553, Processing Time 0.038 seconds

Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

  • Cho, Song-Mi;Kang, Beom Ryong;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

Growth Model of Common Ice Plant (Mesembryanthemum crystallinum L.) Using Expolinear Functions in a Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 선형 지수 함수를 이용한 Common Ice Plant의 생육 모델)

  • Cha, Mi-Kyung;Kim, Ju-Sung;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.493-498
    • /
    • 2014
  • The objective of this study was to make growth and yield models for common ice plant (Mesembryanthemum crystallinum L.) using expolinear functional equations in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-hours photoperiod were used, and the light intensity was $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Nutrient film systems with three layers were used for plant growth. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Leaf area, shoot fresh and dry weights, light use efficiency of common ice plant as function of days after transplanting, accumulative temperature and accumulative radiation were analyzed. Leaf area, shoot fresh and dry weights per area were described using an expolinear equation. A linear relationship between shoot dry and fresh weights was observed. Light use efficiency of common ice plant was $3.3g{\cdot}MJ^{-1}$ at 30 days after transplanting. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of common ice plant in a closed plant production system.

Plant growth and fruit enlargement among different watermelon (Citrullus lanatus) cultivars in continuous chilling night temperature conditions (지속적인 야간 저온에 의한 수박 품종별 식물체 생장 및 과실 비대 양상)

  • Oak Jin Lee;Hee Ju Lee;Seung Hwan Wi;Tae Bok Kim;Sang Gyu Kim;Won Byoung Chae
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.486-494
    • /
    • 2021
  • Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is sensitive to low temperature and shows retarded growth under 10℃. Although early transplanting guarantees higher returns, it requires cost and labor to maintain the appropriate temperature for plant growth. Therefore, cultivars tolerant to chilling stress is necessary to reduce the cost and labor requirements. The purpose of this study is to analyze data on plant growth and fruit enlargement under continuous chilling night temperature to develop new cultivars tolerant to chilling temperature. Two cultivars expected to have chilling tolerance and another cultivar sensitive to chilling temperature were grown in greenhouses with chilling and optimal night temperature conditions. In the early growth stage after transplanting, the cultivars expected to have chilling tolerance showed better vine length, fresh weight and dry weight. However, one of the tolerant cultivars showed significantly lower vine length, leaf length and width, and petiole length than the sensitive cultivar during pollination period and later growth stage, showing genotype specific responses. The fruit length, width, and weight were also significantly lower in the tolerant cultivar. The fruit set ratio was significantly higher in the chilling sensitive cultivar than the two tolerant cultivars. These results suggest that the present chilling tolerant cultivars in watermelon were selected based on their performance in the early growth stage, and further studies on chilling tolerance in different growth and development stages are required to develop cultivars adapted to various forcing cultivation systems.

The Shaker Type Potassium Channel, GORK, Regulates Abscisic Acid Signaling in Arabidopsis

  • Lim, Chae Woo;Kim, Sang Hee;Choi, Hyong Woo;Luan, Sheng;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.684-691
    • /
    • 2019
  • Evolution of adaptive mechanisms to abiotic stress is essential for plant growth and development. Plants adapt to stress conditions by activating the abscisic acid (ABA) signaling pathway. It has been suggested that the ABA receptor, clade A protein phosphatase, SnRK2 type kinase, and SLAC1 anion channel are important components of the ABA signaling pathway. In this study, we report that the shaker type potassium (K+) channel, GORK, modulates plant responses to ABA and abiotic stresses. Our results indicate that the full length of PP2CA is needed to interact with the GORK C-terminal region. We identified a loss of function allele in gork that displayed ABA-hyposensitive phenotype. gork and pp2ca mutants showed opposite responses to ABA in seed germination and seedling growth. Additionally, gork mutant was tolerant to the NaCl and mannitol treatments, whereas pp2ca mutant was sensitive to the NaCl and mannitol treatments. Thus, our results indicate that GORK enhances the sensitivity to ABA and negatively regulates the mechanisms involved in high salinity and osmotic stresses via PP2CA-mediated signals.

Effects of Rhizosphere Microorganisms and Wood Vinegar Mixtures on Rice Growth and Soil Properties

  • Jeong, Kang Wook;Kim, Bo Sung;Ultra, Venecio U. Jr.;Chul, Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.355-365
    • /
    • 2015
  • Environment-friendly growth enhancers for rice are being promoted to reverse the negative impact of intensive chemical-based and conventional rice farming on yield sustainability and environmental problems. Several rhizosphere microorganisms and pyroligneous acids (PA) had demonstrated beneficial influence on growth, yield and grain quality of rice. Since most of the previous study had evaluated the effect of PGPR and PA on paddy rice singly, the effect of combined application of these on the growth and yield of paddy rice and on some soil chemical properties were determined. A four factorial pot experiment was conducted to evaluate the effect of PGPR, PA in combination with fertilizers and on different soil types. There were 54 treatment combinations including the control with three replications under complete randomized design. Plant growth parameters were evaluated using standard procedures during tillering and heading stages. Rice yield and some soil chemical properties were determined at harvest. Results showed that inoculation of Bacillus licheniformis and Fusarium fujikuroi enhanced plant growth by increasing the plant height which could be ascribe to its ability to promote IAA and GA production in plants. Inoculation of Rhizobium phaseoli enhanced chlorophyll content indicative to its ability to improve the N nutrition. However, these plant growth benefits during the vegetative stage were override by the fertilizer application effect especially during the maturity stage and grain yield. High fertilization rates on coarse-textured soil without nutrient loss resulted to high available nutrients and consequently high yield. Wood vinegar application however improved nutrient availability in soil which could be beneficial for improving soil quality. Further evaluation is necessary to fully assess the potential benefits that could be derived from inoculation of these organisms and wood vinegar application in different soil environment especially under different field conditions.

Effect of UV Radiation on Early Growth of Korean Rice Cultivars(Oryza sativa L.)

  • Choi, Kwan-Sam;In, Jun-Gyo;Kang, Si-Yong;Bae, Chang-Hyu;Lee, Hyo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.296-301
    • /
    • 1999
  • The concerns on the crop damage by ultraviolet (UV) radiations is increasing owing to the decrease of their absorbing stratospheric ozone in the tropospheric. Cultivar differences on early growth of UV radiation among five Korean rice cultivars, four japonica types and one Tongil type (indica-japonica cross hybrid), were studied. Pot-seeded rice plants were grown under four different radiation conditions, i.e., visible radiation only, visible radiation with supplemented with high or low dose of UV-B (280~320 nm in wavelength) and UV-C (less than 280 nm in wavelength). The inhibitory degree on plant height, shoot and root weight and length of leaf blade and leaf sheath were determined at 40 days after seeding. UV-C showed the most severe inhibitory effect on the degree of biomass gain and leaf growth in most cultivars examined, followed by high UV-B and low UV-B. Among the cultivars used, the Kuemobyeo was the most sensitive cultivar and had not repair or showed resistance ability to continued irradiation of UV radiation. However, Janganbyeo and Jaekeon showed different responses that the elongation of leaf blades was promoted on 2nd and 3rd leaves and inhibited on 4th and 5th leaves but this inhibitory degree was reduced on 6 th and 7th leaves. Such tendency on leaf growth means that both cultivars had low sensitivity and most resistant ability to continued irradiation of UV radiation. While Tongil showed different response to enhanced UV radiation, ie., low UV-B promoted leaf growth but the inhibitory was severely increased by continued irradiation of high UV-B and UV-C, which means that Tongil had high threshold of UV radiation for response as an inhibitory light of plant growth. The results of this study indicate that the differences on sensitivity or resistant to the effects of UV radiation were existed among Korean rice cultivars.

  • PDF

Effects of commercial soils on germination, early growth, and chlorophyll content of Aspilia africana, a medicinal plant

  • Okello, Denis;Komakech, Richard;Kim, Yong-Goo;Rahmat, Endang;Chung, Yuseong;Omujal, Francis;Kang, Youngmin
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.115-122
    • /
    • 2021
  • Aspilia africana (Pers) C.D.Adams, a plant used for centuries in many African countries to treat diseases such as osteoporosis, malaria, tuberculosis, and diabetes, is of great pharmaceutical interest, yet there is limited scientific literature on its germination and growth. This research paper describes the effects of different commercial soils on the germination, growth, and chlorophyll content of A. africana. The germination parameters assessed included final germination percentage (FGP), mean germination time (MGT), and germination index (GI). Shoot length, leaf number, and fresh and dry weights were some of the parameters used to assess A. africana growth. The FGP was low and did not vary significantly; the MGT was 7 ~ 10 days; and the GI was significantly higher in PPS soil at 4.61 ± 0.332 days. Aspilia africana plants in HS:PPS soil showed the best overall growth, producing the highest mean leaf number (18.00 ± 1.129), longest mean shoot length (202.43 ± 13.451 mm), and highest mean fresh and dry weights (7.08 ± 1.061 g and 0.629 ± 0.112 g, respectively). The highest chlorophyll content in leaves of A. africana under HS:PPS conditions suggested a higher photosynthetic potential of plants in this soil. The best growth performance of A. africana in the HS:PPS soil could be attributed to a higher amount of certain mineral nutrients such as nitrogen, potassium, and phosphorus in the HS:PPS soil compared to the other soil categories. It is unclear why the FGP of A. africana was low and we recommend an exclusive study to investigate this further.

Feasible Management of Southern Corn Leaf Blight via Induction of Systemic Resistance by Bacillus cereus C1L in Combination with Reduced Use of Dithiocarbamate Fungicides

  • Lai, Yi-Ru;Lin, Pei-Yu;Chen, Chao-Ying;Huang, Chien-Jui
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.481-488
    • /
    • 2016
  • Dithiocarbamate fungicides such as maneb and mancozeb are widely used nonsystemic protectant fungicides to control various plant fungal diseases. Dithiocarbamate fungicides should be frequently applied to achieve optimal efficacy of disease control and avoid either decline in effectiveness or wash-off from leaf surface. Dithiocarbamates are of low resistance risk but have the potential to cause human neurological diseases. The objective of this study was to develop a strategy to effectively control plant disease with reduced use of dithiocarbamtes. Southern corn leaf blight was the model pathosystem for the investigation. When corn plants were drench-treated with Bacillus cereus C1L, a rhizobacterium able to induce systemic resistance in corn plants against southern leaf blight, frequency of spraying dithiocarbamate fungicides could be decreased. The treatment of B. cereus C1L was able to protect maize from southern leaf blight while residues of dithiocarbamates on leaf surface were too low to provide sufficient protection. On the other hand, frequent sprays of mancozeb slightly but significantly reduced growth of corn plants under natural conditions. In contrast, application of B. cereus C1L can significantly promote growth of corn plants whether sprayed with mancozeb or not. Our results provide the information that plant disease can be well controlled by rhizobacteria-mediated induced systemic resistance in combination with reduced but appropriate application of dithiocarbamate fungicides just before a heavy infection period. An appropriate use of rhizobacteria can enhance plant growth and help plants overcome negative effects caused by dithiocarbamates.

A New Report on Edible Tropical Bolete, Phlebopus spongiosus in Thailand and Its Fruiting Body Formation without the Need for a Host Plant

  • Kumla, Jaturong;Suwannarach, Nakarin;Lumyong, Saisamorn
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.263-275
    • /
    • 2020
  • Phlebopus spongiosus is a well-known edible ectomycorrhizal mushroom indigenous to southern Vietnam. The mushroom specimens collected from northern Thailand in this study were identified as P. spongiosus. This identification was based on morphological characteristics and the multi-gene phylogenetic analyses. Pure cultures were isolated and the relevant suitable mycelial growth conditions were investigated. The results indicated that the fungal mycelia grew well on L-modified Melin-Norkans, and Murashige and Skoog agar all of which were adjusted to a pH of 5.0 at 30 ℃. Sclerotia-like structures were observed on cultures. The ability of this mushroom to produce fruiting bodies in the absence of a host plant was determined by employing a bag cultivation method. Fungal mycelia completely covered the cultivation substrate after 90-95 days following inoculation of mushroom spawn. Under the mushroom house conditions, the highest amount of primordial formation was observed after 10-15 days at a casing with soil:vermiculite (1:1, v/v). The primordia developed into a mature stage within one week. Moreover, identification of the cultivated fruiting bodies was confirmed by both morphological and molecular methods. This is the first record of P. spongiosus found in Thailand and its ability to form fruiting bodies without a host plant.

The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus)

  • Hoa, Ha Thi;Wang, Chun-Li
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.14-23
    • /
    • 2015
  • The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at $28^{\circ}C$. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms.