Browse > Article
http://dx.doi.org/10.1080/12298093.2020.1784592

A New Report on Edible Tropical Bolete, Phlebopus spongiosus in Thailand and Its Fruiting Body Formation without the Need for a Host Plant  

Kumla, Jaturong (Department of Biology, Faculty of Science, Chiang Mai University)
Suwannarach, Nakarin (Department of Biology, Faculty of Science, Chiang Mai University)
Lumyong, Saisamorn (Department of Biology, Faculty of Science, Chiang Mai University)
Publication Information
Mycobiology / v.48, no.4, 2020 , pp. 263-275 More about this Journal
Abstract
Phlebopus spongiosus is a well-known edible ectomycorrhizal mushroom indigenous to southern Vietnam. The mushroom specimens collected from northern Thailand in this study were identified as P. spongiosus. This identification was based on morphological characteristics and the multi-gene phylogenetic analyses. Pure cultures were isolated and the relevant suitable mycelial growth conditions were investigated. The results indicated that the fungal mycelia grew well on L-modified Melin-Norkans, and Murashige and Skoog agar all of which were adjusted to a pH of 5.0 at 30 ℃. Sclerotia-like structures were observed on cultures. The ability of this mushroom to produce fruiting bodies in the absence of a host plant was determined by employing a bag cultivation method. Fungal mycelia completely covered the cultivation substrate after 90-95 days following inoculation of mushroom spawn. Under the mushroom house conditions, the highest amount of primordial formation was observed after 10-15 days at a casing with soil:vermiculite (1:1, v/v). The primordia developed into a mature stage within one week. Moreover, identification of the cultivated fruiting bodies was confirmed by both morphological and molecular methods. This is the first record of P. spongiosus found in Thailand and its ability to form fruiting bodies without a host plant.
Keywords
Ectomycorrhizal fungi; edible bolete; fruting body production; mycelial growth condition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brundrett MC, Bougher N, Dell B, et al. Working with mycorrhizas in forestry and agriculture. Canberra (Australia): Australian Centre for International Agricultural Research; 1996.
2 Langer I, Krpata D, Peintner U, et al. Media formulation influences in vitro ectomycorrhizal synthesis on the European aspen Populus tremula L. Mycorrhiza. 2008;18:297-307.   DOI
3 Danell E. Cantharellus. In: Cairney JWG, Chambers SM, editors. Ectomycorrhizal fungi: key genera in profile. Berlin (Germany): Springer-Verlag; 1985. p. 253-267.
4 Ohta A, Fujiwara N. Fruit-body production of an ectomycorrhizal fungus in genus Boletus in pure culture. Mycoscience. 2003;44:295-300.   DOI
5 Binder M, Hibbett DS. Molecular systematics and biological diversification of Boletales. Mycologia. 2006;98:971-981.   DOI
6 Wu G, Feng B, Xu J, et al. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Divers. 2014;69:93-115.   DOI
7 Wu G, Li YC, Zhu XT, et al. One hundred noteworthy boletes from China. Fungal Divers. 2016;81:25-188.   DOI
8 Boedijn KB. Some mycological notes. Sydowia. 1951;5:211-229.
9 Bruns TD, Bidartondo MI, Taylor DL. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol. 2002;42:352-359.   DOI
10 Martin F, Diez J, Dell B, et al. Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol. 2002;153:345-357.   DOI
11 Hirose D, Shirouzu T, Tokumasu S. Host range and potential distribution of ectomycorrhizal basidiomycete Suillus pictus in Japan. Fungal Ecol. 2010;3:255-260.   DOI
12 Phosri C, Martin MP, Sihanonth P, et al. Molecular study of the genus Astraeus. Mycol Res. 2007;111:275-286.   DOI
13 Phosri C, Watling R, Suwannasai N, et al. A new representative of star-shaped fungi: Astraeus sirindhorniae sp. nov. from Thailand. PLoS One. 2014;9:e71160.   DOI
14 Rossi MJ, Oliveira VL. Growth of the ectomycorrhizal fungus Pisolithus microcarpus in different nutritional conditions. Braz J Microbiol. 2011;42:624-632.   DOI
15 Islam F, Ohga S. Effects of media formulation on the growth and morphology of ectomycorrhizae and their association with host plant. ISRN Agronomy. 2013;2013:1-12.   DOI
16 Kumla J, Danell E, Bussaban B, et al. Suitable growth conditions and nutrition factors on in vitro culture of Phlebopus portentosus (Boletales). Chiang Mai J Sci. 2011;38:156-159.
17 Cotter HVT, Miller O. Sclerotia of Boletinellus meruloides in nature. Mycologia. 1985;77:927-931.   DOI
18 Daza A, Manjon JL, Camacho M, et al. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.:Fr.) Pers. Mycorrhiza. 2006;16:133-136.   DOI
19 Saensuk T, Suntararak S. Mycelia cultivation 4 edible mushroom from Khao Kra-Dong volcano forest park, Thailand. NU J Sci Tech. 2018;2:38-45.
20 Lazarevic J, Stojicic D, Keca N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. Forest Syst. 2016;25:e048.
21 Salmones D, Gaitan-Hernandez R, Mata G. Cultivation of Mexican wild strains of Agaricus bisporus, the button mushroom, under different growth conditions in vitro and determination of their productivity. Biotechnol Agron Soc Environ. 2018;22:45-53.
22 Yamanaka K, Namba K, Tajiri A. Fruit body formation of Boletus reticulatus in pure culture. Mycoscience. 2000;41:189-191.   DOI
23 Lumyong S, Sanmee R, Lumyong P. Is large scale cultivation of boletes possible? Opera Mycol. 2007;1:34-37.
24 Kumla J, Bussaban B, Suwannarach N, et al. Basidiome formation of an edible wild, putatively ectomycorrhizal fungus, Phlebopus portentosus without host plant. Mycologia. 2012;104:597-603.   DOI
25 Kikuchi K, Matsushita N, Suzuki K. Fruit body formation of Tylopilus castaneiceps in pure culture. Mycoscience. 2009;50:313-316.   DOI
26 Martos ET, Zied DC, Junqueira PPG, et al. Casing layer and effect of primordia induction in the production of Agaricus subrufescens mushroom. Agric Nat Resour. 2017;51:231-234.
27 Wilson AW, Binder M, Hibbett DS. Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol. 2012;194:1079-1095.   DOI
28 Singer R, Araujo I, Ivory MH. The ectotrophically mycorrhizal fungi of the neotropical lowlands, especially central Amazonia. Beih Nova Hedwig. 1983;77:1-352.
29 Watling R, Li TH. Australian boletes: a preliminary survey. Edinburgh (UK): Royal Botanic Garden; 1999.
30 Heinemann P, Rammeloo J. Observations sur le genre Phlebopus (Boletineae). Mycotaxon. 1982;15:384-404.
31 Li TH, Watling R. New taxa and combinations of Australian boletes. Edinburgh J Bot. 1999;56:143-148.   DOI
32 Sanmee R, Lumyong R, Dell B, et al. In vitro cultivation and fruit body formation of the black bolete, Phlebopus portentosus, a popular edible ectomycorrhizal fungus in Thailand. Mycoscience. 2010;51:15-22.   DOI
33 Ji K-P, Cao Y, Zhang C-X, et al. Cultivation of Phlebopus portentosus in southern China. Mycol Progress. 2011;10:293-300.   DOI
34 Pegler DN. Agaric flora of Sri Lanka. Kew Bulletin Additional Series XII. Edinburgh (UK): Royal Botanic Garden Kew; 1986.
35 Pham NDH, Takahashi H, Fukiharu T, et al. Phlebopus spongiosus sp. nov. (Boletales, Boletinellaceae) with a sponge-like tissue. Mycotaxon. 2012a;119:27-34.   DOI
36 Baroni TJ, Cifuentes J, Santana BO, et al. A new species of Phlebopus (Boletales, Basidiomycota) from Mexico. North Amer Fungi. 2010;10:1-13.
37 Pegler DN. A preliminary agaric flora of East Africa. Kew Bulletin Additional Series VI. Edinburgh (UK): Royal Botanic Garden Kew; 1977.
38 Singer R. The Agaricales in modern taxonomy. Koenigstein (Germany): Koeltz Scientific Books; 1986.
39 Binder M, Bresinsky A. Derivation of polymorphic lineage of gasteromycetes from boletoid ancestors. Mycologia. 2002;94:85-98.   DOI
40 Halling RE. A synopsis of Colombian boletes. Mycotaxon. 1989;34:93-113.
41 Calaca FJS, Magnago AC, Alvarenga RLM, et al. Phlebopus beniensis (Boletinellaceae, Boletales) in the Brazilian Cerrado biome. Rodriguesia. 2018;69:939-944.   DOI
42 Carrasco J, Tello ML, Perez M, et al. Biotechnological requirements for the commercial cultivation of macrofungi: substrate and casing layer. In: Singh B, Lallawmsanga PA, editros. Biology of macrofungi. fungal biology. Cham (Switzerland): Springer; 2018. p. 159-175.
43 Bahram M, Polme S, Koljalg U, et al. A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol. 2011;75:313-320.   DOI
44 Zang M. Taxonomy, mycogeography and ectomycorrhizal association with the Boletales from China. I. Family Strobilomycetaceae. Mycosystema. 1997;16:264-269.
45 Palacio M, Gutierrez Y, Franco-Molano AE, et al. Nuevos registros de macrohongos (Basidiomycota) para Colombia procedentes de unbosque seco tropical. Actualidades Biologicas. 2014;37:319-339.
46 Kumla J, Hobbie EA, Suwannarach N, et al. The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis. Mycorrhiza. 2016;26:333-343.   DOI
47 Bougher NL, et al. Diversity of ectomycorrhizal fungi associated with eucalypts in Australia. In: Brundrett MC, Dell B, Malajczuk N, editors. Mycorrhizal for plantation forestry in Asia. Canberra (Australia): Australian Centre for International Agricultural Research; 1995. p. 8-15.
48 Mortimer PE, Karunarathna SC, Li Q, et al. Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers. 2012;56:31-47.   DOI
49 Watling R. The relationships and possible distributional patterns of boletes in south-east Asia. Mycol Res. 2001;105:1440-1448.   DOI
50 Watling R. The sclerodermatoid fungi. Mycoscience. 2006;47:18-24.   DOI
51 Thoen D, Ducousso M. Mycorrhizal habit and sclerogenesis of Phlebopus sudanicus (Gyrodontaceae) in Senegal. Agric Ecosyst Environ. 1990;28:519-523.   DOI
52 Pham NDH, Yamada A, Shimizu K, et al. A sheathing mycorrhiza between the tropical bolete Phlebopus spongiosus and Citrus maxima. Mycoscience. 2012b;53:347-353.   DOI
53 Williams DJ. Mealybugs of southern Asia. Kuala Lumpur (Malaysia): The Natural History Museum, London, and Southdene; 2004.
54 Le TTN, Tran CH, Phan MH, et al. Mycelial cultivation of Phlepobus spongiosus, an edible ectomycorrhizal mushroom in southern Vietnam. J Sci Ho Chi Minh City Open University. 2017;7:14-21.
55 Zhang CX, He MX, Cao Y, et al. Fungus-insect gall of Phlebopus portentosus. Mycologia. 2015;107:12-20.   DOI
56 Thongklang N, Hyde DK, Bussaban B, et al. Culture condition, inoculum production and host response of a wild mushroom, Phlebopus portentosus strain CMUHH121-005. Maejo Int J Sci Technol. 2010;5:413-425.
57 Kumla J, Danell E, Lumyong S. Improvement of yield for a tropical black bolete, Phlebopus portentosus, cultivation in northern Thailand. Mycoscience. 2015;56:114-117.   DOI
58 Zhang C, He M, Liu J, et al. Brief introduction to a unique edible bolete-Phlebopus portentosus in southern China. J Agri Sci Tech B. 2017;7:386-394.
59 Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-4246.   DOI
60 Kornerup A, Wanscher JH. Methuen Handbook of Colour. 3rd ed. London (UK): Methuen; 1978.
61 Rehner SA, Buckley EP. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97:84-98.   DOI
62 Matheny PB. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol. 2005;35:1-20.   DOI
63 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792-1797.   DOI
64 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688-2690.   DOI
65 Ronquist F, Teslenko M, Van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539-542.   DOI
66 Darriba D, Taboada GL, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772.
67 Chandrasrikul A, Suwanarit P, Sangwanit U, et al. Mushroom (Basidiomycetes) in Thailand. Bangkok (Thailand): Office of Natural Resources and Environmental Policy and Planning; 2011.
68 Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783-791.   DOI
69 Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182-192.   DOI
70 Alfaro ME, Zoller S, Lutzoni F. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol. 2003;20:255-266.   DOI
71 Xu M, Zhu J, Kang H, et al. Optimum conditions for pure culture of major ectomycorrhizal fungi obtained from Pinus sylvestris var. mongolica plantations in southeastern Keerqin sandy lands. China. J Forest Res. 2008;19:113-118.   DOI
72 Vaario L-M, Gill WM, Tanaka M, et al. Aseptic ectomycorrhizal synthesis between Abies firma and Cenococcum geophilum in artificial cuture. Mycoscience. 2000;41:395-399.   DOI