• 제목/요약/키워드: Plant Engineering

검색결과 9,376건 처리시간 0.036초

PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS

  • Abdallah, Khaled Atya Ahmed;Mesquita, Patricia Alves Franca de;Yusoff, Norashila;Nam, GungIhn;Jung, JaeCheon;Lee, YoungKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.89-103
    • /
    • 2016
  • Due to safety of the plant, it became very clear the importance of study occurrence reactor coolant system (RCS) issues specially the primary water stress corrosion cracking (PWSCC). The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. Robotic devices have been used for internal inspection, maintenance and performing remote welding and inspection in high-radiation areas. In this paper, PWSCC overview and inlay and over lay welding methodology introduced, concept of robotic device that can be inserted into the piping via Steam Generator (SG) main way to access to primary piping of pressurized water reactor (PWR) is developed based on SE methodology. A 3D model of the inspection system was developed along with the APR1400 (Advanced Power Reactor)reactor coolant systems (RCS) and internals with virtual 3D simulation of the operation for visualization to prove the validity of the concept.

복합열원설비 운전온도 최적 설정에 관한 해석적 연구 (An Analytical Study on the Optimal Set-point of the Hybrid Plant)

  • 전종욱;이선일;이태원;김용기;홍대희;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

PLANT CELL WALL WITH FUNGAL SIGNALS MAY DETERMINE HOST-PARASITE SPECIFICITY

  • Shiraishi, T.;Kiba, A.;Inata, A.;Sugimoto, M.;Toyoda, K.;Ichinose, Y.;Yamada, T.
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1998년도 The 12th Symposium on Plant Biotechnology Vol.12
    • /
    • pp.10-18
    • /
    • 1998
  • For improvement of plants in disease resistance, it is most important to elucidate the mechanism to perceive and respond to the signal molecules of invaders. A model system with pea and its pathogen, Mycosphaerella pinodes, showed that the fungal elicitor induced defense responses in all plant species tested but that the suppressor of the fungus blocked or delayed the expression of defense responses and induced accessibility only in the host plant. In the world, many researchers believe that the pathogens` signals are recognized only on the receptors in the plasma membranes. Though we found that the ATPase and polyphosphoinositide metabolism in isolated plasma membranes responded to these fungal signals, we failed to detect specific actions of the suppressor in vitro on these plasma membrane functions. Recently, we found that ATPase (NTPases) and superoxide generating system in isolated cell wall were regulated by these fungal signals even in vitro, especially, by the suppressor in a strictly species-specific manner and also that the cell wall alone prepared an original defense system. The effects of both fungal signals on the isolated cell wall functions in vitro coincide perfectly with those on defense responses in vivo. In this treatise, we discuss the key role of the cell wall, which is plant-specific and the most exterior organelle, in determining host-parasite specificity and molecular target for improvement of plants.

  • PDF

발전 플랜트 O&M을 위한 아키텍처 프레임워크 개념모델에 관한 연구 (Research on a Conceptual Model of Architecture Framework for Power Plant Operations & Maintenance(Q&M))

  • 임용택
    • 시스템엔지니어링학술지
    • /
    • 제14권1호
    • /
    • pp.83-88
    • /
    • 2018
  • Engineering is a sector with more than three times the industrial effectiveness of manufacturing. In the domestic engineering life cycle, the Operations & Maintenance (O&M) phase is a relatively high level of technology. Based on accumulated knowledge of O&M phase, it is necessary to advance operating technology and expand overseas O&M market expenditure. This study is the early stage of knowledge-based power plant O&M service framework reference model. In this study, we propose a conceptual model of architecture framework for power plant O&M. We survey the architecture framework and reference model and propose conceptual model of architecture framework for power plant O&M. The conceptual model of architecture framework for power plant O&M consists of stakeholder, O&M scenario, O&M technology. In particular, the O&M technology is defined as the fourth industrial revolution intelligence information technology. We defined a meta model from the conceptual model to define the power plant O&M architecture framework. In the future, we intend to development an architecture framework from the conceptual model and meta model.

ISO 15926 기반 공정 플랜트 3D 설계 정보 통합 플랫폼의 개발 (Development of an ISO 15926-based Integration Platform of 3D Design Data for Process Plants)

  • 김병철;박상진;김봉철;명세현;문두환
    • 한국CDE학회논문집
    • /
    • 제20권4호
    • /
    • pp.385-400
    • /
    • 2015
  • ISO 15926 is an international standard for the integration and sharing of plant lifecycle data. Plant 3D design data typically consist of logical configuration, equipment specifications and ports, and 3D shape data. This paper presents the method for the ISO 15926-based integration of plant 3D design data. For this, reference data (class, attribute, and template) of ISO 15926 were extended to describe plant 3D design data. In addition to the data model extension, a plant design information integration platform which reads plant 3D design data in ISO 15926 and displays 3D design information was developed. Finally, the prototype platform is verified through the experiment of loading and retrieving plant 3D design data in ISO 15926 with the platform.

Study on The Development of Basic Simulation Network for Operational Transient Analysis of The CANDU Power Plant

  • Park, Jong-Woon;Lim, Jae-cheon;Suh, Jae-seung;Chung, Ji-bum;Kim, Sung-Bae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.423-428
    • /
    • 1995
  • Simulation models have been developed to predict the overall behavior of the CANDU plant systems during normal operational transients. For real time simulation purpose, simplified thermal hydraulic models are applied with appropriate system control logics, which include primary heat transport system solver with its component models and secondary side system models. The secondary side models are mainly used to provide boundary conditions for primary system calculation and to accomodate plant power control logics. Also, for the effective use of simulation package, hardware oriented basic simulation network has been established with appropriate graphic display system. Through validation with typical plant power maneuvering cases using proven plant performance analysis computer code, the present simulation package shows reasonable capability in the prediction of the dynamic behavior of plant variables during operational transients of CANDU plant, which means that this simulation tool can be utilized as a basic framework for full scope simulation network through further improvements.

  • PDF

Rapid and simple method for DNA extraction from plant and algal species suitable for PCR amplification using a chelating resin Chelex 100

  • HwangBo, Kwon;Son, Su-Hyun;Lee, Jong-Suk;Min, Sung-Ran;Ko, Suk-Min;Liu, Jang-R.;Choi, Dong-Su;Jeong, Won-Joong
    • Plant Biotechnology Reports
    • /
    • 제4권1호
    • /
    • pp.49-52
    • /
    • 2010
  • A DNA extraction method using Chelex 100 is widely used for bacteria, Chlamydomonas, and animal cell lines, but only rarely for plant materials due to the need for additional time-consuming and tedious steps. We have modified the Chelex 100 protocol and successfully developed a rapid and simple method of DNA extraction for efficient PCR-based detection of transgenes from a variety of transgenic plant and algal species. Our protocol consists of homogenizing plant tissue with a pestle, boiling the homogenized tissue in a microfuge tube with 5% Chelex 100 for 5 min, and centrifuging the boiled mixture. The supernatant, which is used for PCR analysis, was able to successfully amplify transgenes in transgenic tobacco, tomato, potato, Arabidopsis, rice, strawberry, Spirodela polyrhiza, Chlamydomonas, and Porphyra tenera. The entire DNA extraction procedure requires <15 min and is therefore comparable to that used for bacteria, Chlamydomonas, and animal cell lines.

Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

  • Choi, Won-Jun;Roh, Myung-Sub;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.525-533
    • /
    • 2017
  • A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

Superconducting Magnet Power Supply System for the KSTAR 2nd Plasma Experiment and Operation

  • Choi, Jae-Hoon;Lee, Dong-Keun;Kim, Chang-Hwan;Jin, Jong-Kook;Han, Sang-Hee;Kong, Jong-Dae;Hong, Seong-Lok;Kim, Yang-Su;Kwon, Myeun;Ahn, Hyun-Sik;Jang, Gye-Yong;Yun, Min-Seong;Seong, Dae-Kyung;Shin, Hyun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.326-330
    • /
    • 2013
  • The Korea Superconducting Tokamak Advanced Research (KSTAR) device is an advanced superconducting tokamak to establish scientific and technological bases for attractive fusion reactor. This device requires 3.5 Tesla of toroidal field (TF) for plasma confinement, and requires a strong poloidal flux swing to generate an inductive voltage to produce and sustain the tokamak plasma. KSTAR was originally designed to have 16 serially connected TF magnets for which the nominal current rating is 35.2 kA. KSTAR also has 7 pairs of poloidal field (PF) coils that are driven to 1 MA/sec for generation of the tokamak plasma according to the operation scenarios. The KSTAR Magnet Power Supply (MPS) was dedicated to the superconducting (SC) coil commissioning and $2^{nd}$ plasma experiment as a part of the system commissioning. This paper will describe key features of KSTAR MPS for the $2^{nd}$ plasma experiment, and will also report the engineering and commissioning results of the magnet power supplies.