• 제목/요약/키워드: Plant 3D CAD System

Search Result 26, Processing Time 0.042 seconds

Development of a Batch-mode-based Comparison System for 3D Piping CAD Models of Offshore Plants (Aveva Marine과 SmartMarine 3D간의 해양 플랜트 3D 배관 CAD 모델의 배치모드 기반 비교 시스템 개발)

  • Lee, Jaesun;Kim, Byung Chul;Cheon, Sanguk;Cho, Mincheol;Lee, Gwang;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.78-89
    • /
    • 2016
  • When a plant owner requests plant 3D CAD models in the format that a shipbuilding company does not use, the shipyard manually re-models plant 3D CAD models according to the owner's requirement. Therefore, it is important to develop a technology to compare the re-modeled plant 3D CAD models with original ones and to quantitatively evaluate similarity between two models. In the previous study, we developed a graphic user interface (GUI)-based comparison system where a user evaluates similarity between original and re-modeled plant 3D CAD models for piping design at the level of unit. However, an offshore plant consists of thousands of units and thus a system which compares several plant 3D CAD models at unit-level without human intervention is necessary. For this, we developed a new batch model comparison system which automatically evaluates similarity of several unit-level plant 3D CAD models using an extensible markup language (XML) file storing file location and name data about a set of plant 3D CAD models. This paper suggests system configuration of a batch-mode-based comparison system and discusses its core functions. For the verification of the developed system, comparison experiments for offshore plant 3D piping CAD models using the system were performed. From the experiments, we confirmed that similarities for several plant 3D CAD models at unit-level were evaluated without human intervention.

Development of a Similarity Evaluation System for Offshore Plants' 3D Piping CAD Models Created Using Aveva Marine and SmartMarine 3D (Aveva Marine과 SmartMarine 3D 간의 해양 플랜트 3D 배관 CAD 모델 유사도 평가 시스템 개발)

  • Lee, Jaesun;Kim, Byung Chul;Kim, Hyungki;Cheon, Sanguk;Cho, Mincheol;Lee, Gwang;Kim, Jin-Hyun;Mun, Duhwan;Han, Soonhung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.397-406
    • /
    • 2016
  • Diverse stakeholders engaged in design, construction, and operation and maintenance of offshore plants typically operate heterogeneous plant 3D CAD systems. Engineering, procurement, and construction (EPC) companies are required to submit plant design result to the owner in the form of a plant 3D CAD model, as specified in the contract. However, because of the limitations of data interface of plant 3D CAD systems, EPC companies frequently perform manual remodeling to fulfill the terms and conditions of the contract. Therefore, comparison should be performed between the source plant 3D CAD model and the remodeled plant 3D CAD model to prove the validity of the remodeled plant 3D CAD model. To automate the comparison process, we have developed a system for quantitatively assessing the similarity of the plant 3D CAD models. This paper presents the architecture and detailed functions of the system. In addition, experimental results using this system are explained.

Development of Feature-Based 3D CAD Assembly Data Simplification System for Equipment and Materials (특징형상 기반 기자재 3D CAD 조립체 데이터 간략화 시스템 개발)

  • Kim, Byung Chul;Kwon, Soonjo;Park, Sunah;Mun, Duhwan;Han, Soonhung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1075-1084
    • /
    • 2014
  • It is necessary to construct an equipment catalog in plant design. A different level of detail may be needed for the three-dimensional (3D) computer aided design (CAD) data for equipment, depending on the purpose. Equipment suppliers provide CAD data with high complexity, whereas plant designers need CAD data with low complexity. Therefore, it is necessary to simplify the 3D CAD assembly data. To resolve this issue, a system for automatically simplifying the 3D CAD assembly data of equipment was developed. This paper presents the architecture of the system, the detailed functions of the system, and a neutral data format used for uploading simplified 3D CAD assembly data to a plant 3D CAD system. In addition, experiment results using the prototype system are explained.

Development of a System that Translates Spec-catalog Data for Plant Equipment Considering Holes and Nozzles (홀과 노즐을 고려한 플랜트 기기 스펙-카탈로그 데이터 번역 시스템 개발)

  • Lee, Hyunoh;Kwon, Hyeokjun;Lee, Gwang;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.59-70
    • /
    • 2020
  • Three-dimensional (3D) design data is used for various purposes throughout the life cycle of a plant construction project. Plant 3D CAD systems support 3D modeling based on specs-catalogs, which contain data that are used for different purposes such as design, procurement, production, and handover. Therefore, it is important to share the spec-catalog data in the 3D design model with other application systems. Sharing this data thus requires a system that extracts spec-catalog data from plant 3D CAD systems and converts them into neutral model data. In this paper, we analyze equipment spec-catalog data of plant 3D CAD systems and, based on these analyses, define the data structure for neutral spec-catalog data. We subsequently propose a procedure that translates native spec-catalog data to neutral model data and develop a prototype system that performs this operation. The proposed method is then experimentally validated for the test spec-catalog data.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

Development of 3D CAD Part Data Simplification System for Ship and Offshore Plant Equipment (조선해양 기자재 3D CAD 단품 데이터 간략화 시스템 개발)

  • Kim, Byung Chul;Kwon, Soonjo;Park, Sunah;Mun, Duhwan;Han, Soonhung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.167-176
    • /
    • 2013
  • It is necessary to construct equipment catalog in ship outfitting design and offshore plant design. The three-dimensional CAD data of equipment take on different level-of-detail depending on the purpose. Equipment suppliers provide CAD data with high complexity while ship designers need CAD data with low complexity. Therefore, it is necessary to simplify CAD data. However, it takes much time to simplify them manually. To resolve the issue, a system for automatically simplifying the 3D CAD data of equipment was developed. This paper presents the architecture of the system and the implementation details. In addition, experiment result using the prototype system is explained.

A study of the STEP-based Data Repository and P&ID-3D CAD Model Connected Pilot System at Nuclear Power Plant (원전 대상의 STEP 기반 데이터 저장소 및 P&ID와 3차원 CAD 모델 연계에 관한 연구)

  • 안호준;조광종;박찬국;한순홍;안경익;최영준
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.395-400
    • /
    • 2004
  • This study is that STEP based Data Repository of APR1400 Nuclear Power Plant Reactor Coolant System is developed. The STEP based Data Repository is accessed by Web-based and an attribute data of Reactor Coolant System Equipment is offered. Also, a P&ID drawing file & 3D CAD Model of Reactor Coolant System is loaded. The P&ID drawing file of Reactor Coolant System Equipment Model is connected with 3D CAD Model file. This 2D/3D CAD Model connected Prototype system confirms a real layout of Reactor Coolant System.

  • PDF

A Study on Improvement of Nuclear Power Plant Construction System According to Data-centric Design Technique Introduction in Korea (데이터 기반 설계기법 도입에 따른 원전 건설관리체계 개선방향 고찰)

  • Lim, ByungKi;Byon, Sujin
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.108-112
    • /
    • 2016
  • This study is established the data-centric design concept, which is the latest design technique, by analyzing existing study literature for its application on the nuclear power plant industry in Korea. This study investigated the data-centric design cases in the advanced companies and suggests a data-centric design integrated system framework by analyzing the major functions of the commercial 3D CAD system, which is globally used in the plant architect engineering. In order to apply the data-centric design integrated system framework to the nuclear power plant industry in Korea, the main functions of a nuclear power plant design information integrated system framework, which can manage the design products of each EPC step and the related information in integrated way, is suggested by analyzing the supplier design, field design process and field design drawings, which have close relation with the plant Architect Engineering (A/E). It is expected that the result of this study would contribute in the dramatic enhancement in the job efficiency of nuclear power plant design process in Korea.

A Development of Offshore plant Piping Process Monitoring System Based on 3D CAD Model (3D CAD 모델 기반 해양플랜트 배관 공정 모니터링 시스템 개발)

  • Kim, Hyun-Cheol;Lee, Gyu-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.58-65
    • /
    • 2020
  • 3D Models of offshore plant piping materials designed by 3D CAD systems are provided to the production processes in the form of 2D piping drawings and 2D piping installation drawings. In addition to the standard engineering information, the purchasing, procurement, manufacturing, installation, and inspection of raw materials are managed systematically in an integrated process control system. The existing integrated process management system can help reduce the processing time by managing the flow and progress of resources systematically, but it does not include 3D design model information. Hence, it is difficult to understand complicated pipe structures before installing the pipe. In addition, when design changes or immediate design modifications are required, it is difficult to find related data or exchange information quickly with each other. To solve this problem, an offshore plant-piping process-monitoring system was developed based on a 3D model. The 3D model-based piping monitoring system is based on Visual Studio 2017 C# and UNITY3D so that the piping-process work information can be linked to the 3D CAD model in real time. In addition, the 3D model could check the progress of the pipe installation process, such as block, size, and material, and the progress of functional inspection items, such as cleaning, hydraulic inspection, and pneumatic inspection.

A basic study 3D model advancement method for nuclear power plant (원자력 발전설비의 3D 모델 상세화 방안에 대한 기초 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.37-38
    • /
    • 2018
  • BIM(Building Information Modeling) in the architecture, VDC(Virtual Design and Construction) defined CIFE(Center for Integrated Facility Engineering) of Stanford university in USA, and Data-driven design definition issued by TECDOC-1284 of IAEA are doing data-level design generated by 3D CAD technology, integrating and managing related information based on the 3D model, and Using 3D models effectively during nuclear power plant life cycle. 3D model of domestic nuclear power industry is using interference review between design fields, 4D system linked 3D construction model and schedule activity, but the 3D model generated in the design phase is effectively not utilized during the construction, operation, decommissioning. therefore, This study is aimed to suggest 3D model LOD(Level of Detail) advancement method through the analysis of existing literature, 2D drawings, and 3D models throughout nuclear power plant lifecycle.

  • PDF