• Title/Summary/Keyword: Planned outages

Search Result 8, Processing Time 0.031 seconds

Reliability Evaluation Technique for Electrical Distribution Networks Considering Planned Outages

  • Hu, Bo;He, Xiao-Hui;Cao, Kan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1482-1488
    • /
    • 2014
  • The reliability evaluation of the electrical distribution networks (EDN) requires sufficient consideration of the effects of planned outages. The planned outages of the EDN can be divided, by outage models and their effects on the reliability into two major categories: by equipment and by feeder. After studying the characteristics of different categories of planned outages, this paper expands the classification of load points by outage time from 4 types to 7 types and defines corresponding reliability parameters for the different types. By using the section algorithm, this paper proposes a reliability evaluation technique of EDN considering equipment random failures and two categories of planned outages. The proposed technique has been applied to the RBTS-BUS6 test system and some practical EDNs in China. The study results demonstrate that the proposed technique is of higher practical value and can be used for evaluating the reliability performance of EDN more efficiently considering the planned outages.

Modeling Planned Maintenance Outage of Generators Based on Advanced Demand Clustering Algorithms (개선된 수요 클러스터링 기법을 이용한 발전기 보수정지계획 모델링)

  • Kim, Jin-Ho;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.172-178
    • /
    • 2006
  • In this paper, an advanced demand clustering algorithm which can explore the planned maintenance outage of generators in changed electricity industry is proposed. The major contribution of this paper can be captured in the development of the long-term estimates for the generation availability considering planned maintenance outage. Two conflicting viewpoints, one of which is reliability-focused and the other is economy-focused, are incorporated in the development of estimates of maintenance outage based on the advanced demand clustering algorithm. Based on the advanced clustering algorithm, in each demand cluster, conventional effective outage of generators which conceptually capture maintenance and forced outage of generators, are newly defined in order to properly address the characteristic of the planned maintenance outage in changed electricity markets. First, initial market demand is classified into multiple demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the initial demand. Then, based on the advanced demand clustering algorithm, the planned maintenance outages and corresponding effective outages of generators are reevaluated. Finally, the conventional demand clusters are newly classified in order to reflect the improved effective outages of generation markets. We have found that the revision of the demand clusters can change the number of the initial demand clusters, which cannot be captured in the conventional demand clustering process. Therefore, it can be seen that electricity market situations, which can also be classified into several groups which show similar patterns, can be more accurately clustered. From this the fundamental characteristics of power systems can be more efficiently analyzed, for this advanced classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

G system with forced and scheduled outages

  • Jung, Kyung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.164-176
    • /
    • 1991
  • This paper considers the model of a k-out-of-n :G system with non-identical components which are subject to both forced and planned outages. For the forced outages, it assumes that there are the independent and common-cause outage events causing component failures. Then, the objective is to derive the upper and lower bounds on the mean operating time between system failures in the ample-server model. In addtion, the mean system failure times are also considered.

  • PDF

ISO Coordination of Generator Maintenance Scheduling in Competitive Electricity Markets using Simulated Annealing

  • Han, Seok-Man;Chung, Koo-Hyung;Kim, Balho-H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.431-438
    • /
    • 2011
  • To ensure that equipment outages do not directly impact the reliability of the ISO-controlled grid, market participants request permission and receive approval for planned outages from the independent system operator (ISO) in competitive electricity markets. In the face of major generation outages, the ISO will make a critical decision as regards the scheduling of the essential maintenance for myriads of generating units over a fixed planning horizon in accordance with security and adequacy assessments. Mainly, we are concerned with a fundamental framework for ISO's maintenance coordination in order to determine precedence of conflicting outages. Simulated annealing, a powerful, general-purpose optimization methodology suitable for real combinatorial search problems, is used. Generally, the ISO will put forward its best effort to adjust individual generator maintenance schedules according to the time preferences of each power generator (GENCO) by taking advantage of several factors such as installed capacity and relative weightings assigned to the GENCOs. Thus, computer testing on a four-GENCO model is conducted to demonstrate the effectiveness of the proposed method and the applicability of the solution scheme to large-scale maintenance scheduling coordination problems.

The Analysis For Reliability In Multi-dividing Multi-connecting High Power Distribution System (배전계통 연계에 따른 신뢰도 향상 분석)

  • Cho, Nam-Hun;Ha, Bok-Nam;Kang, Moon-Ho;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.316-318
    • /
    • 2001
  • Occasionally, equipment in a distribution system fails due to damage from weather, vandalism, or other causes. In addition, it is recommended practice to have some way in which maintenance or replacement of every element in a system can be performed without causing lengthy interruption of electrical service to the customers it feeds. Thus, alternate sources, paths, and configurations of service must be planned so that both failures and maintenance do not affect customer service beyond a reasonable amount. In some cases, planning for alternate routes of service during equipment outages or emergencies -- will be the major aspect influencing selection of a feeder's capacity, type of route, or layout. We want to know the relationship between molt-dividing multi-connection and distribution reliability for contingency support considerations.

  • PDF

Multi-Year Maintenance Scheduling of Generators with Considering Total Cost (사회적 총비용을 고려한 발전기 장기 보수계획수립에 관한 연구)

  • Cha, J.M.;Song, K.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.701-703
    • /
    • 1996
  • Maintenance scheduling plays an important role in evaluating the supply reliability of power systems. Since generating units must be maintained and inspected, the generation planner must schedule planned outages during the year. Several factors entering into this scheduling analysis include: seasonal load-demand profile, amount of maintenance to bo done on all generating units, size of the units, elapsed time from last maintenance, and availability of maintenance crews. This paper proposes a new algorithm to decide the multi-year maintenance scheduling with considering the total cost. We adjust the maintenance scheduling to levelize the reliability over all period. The proposed algorithm is applied to a real size power system and the developed reliability results are obtained.

  • PDF

Generator's Maintenance Scheduling to Improve Supply Reliability (공급신뢰도 개선을 위한 발전기 보수계획)

  • 차준민
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Maintenance scheduling of generators plays an important role in evaluating supply reliability of power systems. Since generators must be maintained and inspected, the generation planner must schedule planned outages during the year. Several factors entering into this scheduling analysis include: seasonal load-demand profile, amount of maintenance, size of the units, elapsed time from last maintenance, and availability of maintenance crew. This paper proposes a new maintenance scheduling algorithm for the alternatives of long-term generation expansion planning by using LOLP levelization method which is known as an effective method for the generator's maintenance scheduling. To get the best supply reliability of power systems, we change the maintenance period to levelize the reliability over all period. The proposed algorithm is applied to a real size power system and the better reliability results are obtained.

  • PDF

Operation System Design of Distribution Feeder with Distributed Energy Resources (분산전원이 연계된 배전선로의 운영시스템 설계)

  • Kim, Seong-Man;Chang, Young-Hak;Kim, Kyeong-Hun;Kim, Sul-Ki;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1183-1194
    • /
    • 2021
  • Traditionally, electric power systems have been known as the centralized structures, which is organized into placing customers at the end of the supply chain. However, recent decades have witnessed the emergence of distributed energy resources(:DERs) such as rooftop solar, farming PV system, small wind turbines, battery energy storage systems and smart home appliances. With the emergence of distributed energy resources, the role of distributed system operators(:DSOs) will expand. The increasing penetration of DERs could lead to a less predictable and reverse flow of power in the system, which can affect the traditional planning and operation of distribution and transmission networks. This raises the need for a change in the role of the DSOs that have conventionally planned, maintained and managed networks and supply outages. The objective of this research is to designed the future distribution operation system with multi-DERs and the proposed distribution system model is implemented by hardware-in-the-loop simulation(HILS). The test results show the normal operation domain and reduction of distribution line loss.