• 제목/요약/키워드: Planetary milling

검색결과 91건 처리시간 0.034초

1000rpm의 MA 장치로 TiO2 합성 시 형성된 분말의 특성 (The Property of TiO2 Powder Made with a 1000rpm MA Machine)

  • 이용복;권준현
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.349-356
    • /
    • 2011
  • During the process of synthesis of $TiO_2$ powders using a high-speed planetary milling machine, Fe metallic powders were created which could be dissolved in sulfuric acid solution. With adding $NH_4OH$ solution to the $TiO_2$ powder, it was found that the crystal structure of the synthesized powder did not change and the crystal size decreased slightly. However, when the sulfur powder is mixed with $TiO_2$, the crystal structure of the MA powder was changed from anatase into rutile phase and its size decreased significantly which is in the order of nm in diameter. In case of mechanical alloying with $TiO_2$ powder only, the crystal structure of the powder was transformed into rutile phase and its size was greatly reduced into several nm. Because its size becomes fine, the energy band gap of its rutile phase is larger than that of bulk states (3.0eV).

나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성 (Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures)

  • 이화준;류성수
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • 한국분말재료학회지
    • /
    • 제16권1호
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

Performance of modified graphite as anode material for lithium-ion secondary battery

  • Zheng, Hua;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.243-248
    • /
    • 2011
  • Two different types of graphite, such as flake graphite (FG) and spherical graphite (SG), were used as anode materials for a lithium-ion secondary battery in order to investigate their electrochemical performance. The FG particles were prepared by pulverizing natural graphite with a planetary mill. The SG particles were treated by immersing them in acid solutions or mixing them with various carbon additives. With a longer milling time, the particle size of the FG decreased. Since smaller particles allow more exposure of the edge planes toward the electrolyte, it could be possible for the FG anodes with longer milling time to deliver high reversible capacity; however, their initial efficiency was found to have decreased. The initial efficiency of SG anodes with acid treatments was about 90%, showing an over 20% higher value than that of FG anodes. With acid treatment, the discharge rate capability and the initial efficiency improved slightly. The electrochemical properties of the SG anodes improved slightly with carbon additives such as acetylene black (AB), Super P, Ketjen black, and carbon nanotubes. Furthermore, the cyclability was much improved due to the effect of the conductive bridge made by carbon additives such as AB and Super P.

기계적 합금화 공정을 이용한 초미세 자성연마입자의 제조 및 특성 평가 (Fabrication of the Fine Magnetic Abrasives by using Mechanical Alloying Process and Its Polishing Characteristics)

  • 박성준;이상조
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.34-41
    • /
    • 2004
  • A new method to fabricate the fine magnetic abrasives by using mechanical alloying is proposed. The mechanical alloying process is a solid powder process where the powder particles are subjected to high energetic impact by the balls in a vial. As the powder particles in the vial are continuously impacted by the balls, cold welding between particles and fracturing of the particles take place repeatedly during the ball milling process using a planetary mill. After the manufacturing process, fine magnetic abrasives which the guest abrasive particles c lung to the base metal matrix without bonding material can be obtained. The shape of the newly fabricated fine magnetic abrasives was investigated using SEM and its polishing performance was verified by experiment. It is very helpful to finishing the injection mold steel in final polishing stage. The areal ms surface roughness of the workpiece after several polishing processes has decreased to a few nanometer scales.

Thermal Stability of Amorphous Ti-Cu-Ni-Sn Prepared by Mechanical Alloying

  • Oanha, N.T.H.;Choi, P.P.;Kim, J.S.;Kim, J.C.;Kwone, Y.S.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.953-954
    • /
    • 2006
  • Ti-Cu-Ni-Sn quaternary amorphous alloys of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$ composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for $Ti_{50}Cu_{32}Ni_{15}Sn_3$ and $Ti_{50}Cu_{25}Ni_{20}Sn_5$ after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$.

  • PDF

상안정화된 Leucite의 미세분말 합성과 열적 팽창 특성 연구 (Fabrication of Stabilized Fine Leucite Powder and Its Thermal Expansion Properties)

  • 홍성진;김득중;유영성
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.493-496
    • /
    • 2009
  • Phase stabilized leucite, which has high coefficient of thermal expansion, was synthesized, and its thermal expansion behavior was investigated. The homogeneous leucite phase was synthesized by solid state reaction from the mixture of $K_2CO_3-Al_2O_3-SiO_2$. and its stabilization from tetragonal to cubic phase was attempted by adding $Cs_2CO_3$ into starting materials. And fine powder with an average particle size of a few hundreds ${\mu}m$ were fabricated by planetary milling. During milling, amorphization of leucite was observed and recrystallized after heat treatment. The thermal expansion behavior of tetragonal and cubic leucite has measured and discussed. The average coefficient of thermal expansion of tetragonal and cubic phase leucite from room temperature to $750^{\circ}C$ was $21.4{\times}10^{-6}/^{\circ}C$ and $14.5{\times}10^{-6}/^{\circ}C$, respectively.

Hydrogen Desorption and Absorption Properties of MgH2, LiBH4, and MgH2 + LiBH4 Composite

  • Park, Hye Ryoung;Song, Myoung Youp
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.955-959
    • /
    • 2012
  • To increase the hydrogen storage capacity of Mg-based materials, a sample with a composition of 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ was prepared by planetary ball milling under hydrogen. The absorption and desorption properties of unmilled $MgH_2$, unmilled $LiBH_4$, and 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ were examined. At 648 K the unmilled $MgH_2$ desorbed 5.70 wt% for 60 min. The unmilled $LiBH_4$ desorbed 6.40 wt% H for 780 min at 673 K. The 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ sample desorbed 3.10 wt% H for 50 min, and 3.32 wt% H for 300 min at 623 K at the second cycle.

기계적 밀링공정에 의해 제조된 Bi0.4Sb1.6Te3 소결체의 열전특성 (Thermoelectric Properties of Bi0.4Sb1.6Te3 Sintered Body Fabricated by Mechanical Grinding Process)

  • 이길근;신승철;김우열;하국현
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.313-320
    • /
    • 2006
  • The present study is to analyze the thermoelectric properties of $Bi_{0.4}Sb_{1.6}Te_3$ thermoelectric materials fabricated by the mechanical grinding process. The $Bi_{0.4}Sb_{1.6}Te_3$ powders were prepared by the combination of mechanical milling and reduction treating methods using simply crushed pre-alloyed $Bi_{0.4}Sb_{1.6}Te_3$ powder. The mechanical milling was carried out using the tumbler-ball mill and planetary ball mill. The tumbler-ball milling had an effect on the carrier mobility rather than the carrier concentration, whereas, the latter on the carrier concentration. The specific electric resistivity and Seebeck coefficient decreased with increasing the reduction-heat-treatment time. The thermal conductivity continuously increased with increasing the reduction-heat-treatment time. The figure of merit of the $Bi_{0.4}Sb_{1.6}Te_3$ sintered body prepared by the mechanical grinding process showed higher value than one of the sintered body of the simply crushed powder.

아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성 (Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries)

  • 선호정;조명연;안정철;엄승욱;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.