• Title/Summary/Keyword: Planetary ball-mill

Search Result 71, Processing Time 0.026 seconds

Effect of Atmospheric Hydrogen Pressure on Mg2NiHx synthesis (Mg2NiHx 수소저장합금 합성에 미치는 분위기 수소압의 영향)

  • Hong, Tae Whan;Lim, Jae Won;Kim, Shae Kwang;Kim, Young Jig;Park, Hyun Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.27-40
    • /
    • 1999
  • By hydrogen induced planetary ball milling process, $Mg_2NiH_x$ hydrogen absorbing materials were successfully alloyed mechanically at room temperature, using pure Mg and Ni chips. The Mg & Ni chips were mixed by 45:55 weight ratio and Mechanical Alloying(M.A.) was carried out : the hydrogen pressure induced in the jar was varied from 1 to 20 bars and the M.A. times were 24 and 48 hours. The XRD results revealed that the homogeneous $Mg_2NiH_x$ was incresed with the hydrogen pressure increasing, and that $MgH_x$ was detected by unalloyed Ni chips. The shape and size of the mechanically alloyed particles didn't depend on the induced hydrogen pressure. The results of TGA showed that the hydrogen quantities of $Mg_2NiH_x$ has 1.1~3.9 wt%.

  • PDF

Synthesis of ferromagnetic Sm-Fe-N powders subjected to mechanochemical reaction (Mechanochemical Reaction에 의한 Sm-Fe-N계 자성분말의 합성)

  • 이충효;최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.292-296
    • /
    • 2000
  • Mechenochemical reaction by planetary type ball mill is applied to prepare $Sm_2$$Fe_{17}$$N_{x}$ permanent magnet powders. Starting from pure samarium and iron powders, the formation process of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ phase by ball milling and a subsequent solid state reaction were studied. At as-milled stage powders were found to consist of amorphous Sm-Fe and $\alpha$-Fe phases in all composition of $Sm_2$$Fe_{100-x}$(x = 11, 13, 15). The dependence of starting composition of elemental powder on the formation of Sm-Fe intermetallic compound was investigated by heat treatment of as-milled powders. When Sm concentration was 15 at%, heat-treated powder consists of mostly $Sm_2$$Fe_{17}$$N_{x}$single phase. For synthesizing of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ compound, additional nitriding treatment was carried out under $N_2$gas atmosphere at $450^{\circ}C$. The increase in the coercivity and remanence was parallel to the nitrogen content which increased drastically at first and then gradually as the nitriding time was extended. The ball-milled Sm-Fe-N powders were expected to be prospective materials for synthesizing of permanent magnet with high performance.

  • PDF

Evaluations of Microstructure and Hydrogenation Properties on $Mg_2NiH_x$ ($Mg_2NiH_x$ 수소저장합금의 미세결정구조 및 수소화 특성평가)

  • Seok, Song;Shin, Kyung;Kweon, Soon-Yong;Ur, Soon-Chul;Lee, Young-Geun;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Mg and Mg-based alloys are most important hydrogen storage materials. It is a lightweight and low-cost materials with high hydrogen storage capacity. However, the formation of hydride at high temperature, the deterioration effect, the hydriding and dehydriding kinetics are bad factor for application. In this study, Mg and Ni have been produced by hydrogen induced mechanical alloying(HIMA) process. The raw materials, Mg(purity 99.9%) chip and Ni(purity 99.95%) chip was prepared by using a planetary ball mill apparatus(FRITSCH pulverisette 5). The balls to chips mass ratio(BCR) are 30:1. The hydrogen pressure induced 2.0MPa and milling times were 12, 24, 48, 72, 96 hours with a rotating speed of 200rpm. X-ray diffraction(XRD) analysis was made to characterize the crystallite size and misfit strain. The crystallite size measured by laser particle size analysis(PSA). Microstructure changes were investigated by scanning electron microscopy(SEM) and the transmission electron microscopy(TEM). The hydrogen storage properties were evaluated by using an Sivert's type automatic pressure-composition-therm(PCT) apparatus.

Antioxidant Activity of Saururus chinensis Pretreated by Mechanochemical Technology - Nitrite Scavenging and Electron Donating Ability -

  • Song, Won-Seob;Park, Keum-Joo;Choung, Eui-Su
    • Korean Journal of Plant Resources
    • /
    • v.24 no.3
    • /
    • pp.314-318
    • /
    • 2011
  • Saururus chinensis is used as a raw material of an anti-rheumatic, poultice, sedative and stomachic. The tea of dried Saururus chinensis leaves has a function of relaxing pains in back and breast and of treating stomach ailments. The plant has the functions of anti-inflammatory, depurative, diuretic, febrifuge and refrigerant. The extraction of functional material is carried out by methanol and ethanol solvents. Mechanochemical grinding is applied as a pretreatment process before extraction to enhance the extraction efficiency by increasing the surface area of the materials while changing the chemical properties of the materials. Extraction of functional materials from the Saururus chinensis after grinding as a pretreatment using the mechanochemical technology was accomplished in this study to investigate the effect of grinding on the antioxidant activities of the extract. Saururus chinensis was ground by the planetary ball mill and the morphology was analyzed by SEM. Mechanochemical pretreatment increased the yields of functional materials from 5.9 g to 6.4, 7.0, and 8.1 g after grinding of 30 minutes, 1 hour and 2 hours, respectively. Nitrite scavenging ability increased from 53.0-71.0% to 61.0-79.0% for the methanol extraction in the solution of pH 1.2. Also, Electron donating abilities were increased from 7.90-33.51% to 11.97-38.51% for the methanol extraction. The extract concentration for the half inhibition of DPPH radicals was reduced from $278{\mu}g/mL$ in the original sample to $263{\mu}g/mL$ in the sample after grinding for the methanol extraction.

Preparation of Pure Silver Powders by using Mechanochemical Process (기계화학공정(機械化學工程)에 의한 은(銀)염화물로부터 고순도 은(銀)분말 제조(製造))

  • Lee, Jaer-Yeong;Tung Le, M.;Ahn, Jong-Gwan;Kim, Jong-Oh;Chung, Hun S.;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.33-37
    • /
    • 2006
  • An equal-molar mixture of silver chloride (AgCl) and copper (Cu) was ground in atmosphere conditions using a planetary ball mill to investigate mechanochemical (MC) reaction for preparation of silver powders. The reaction causes the mixture of AgCl and Cu to change the composition of the mixture, such as silver (Ag) and cuprous chloride (CuCl). Through the leaching with ammonium hydroxide solution (1 mol), CuCl can be separated from MC product, so that pure Ag powders can be obtained as the final product. Moreover, polyvinylpyrrolidone (PVP) was used as the additive not only to improve dispersion of Ag pow- der during MC process, but also to control surface oxidation of Ag powders, prepared as the final product.

Milling Behaviors of Al-B4C Composite Powders Fabricated by Mechanical Milling Process (기계적 밀링 공정에 의해 제조된 Al-B4C 복합분말의 밀링 거동 연구)

  • Hong, Sung-Mo;Park, Jin-Ju;Park, Eun-Kwang;Lee, Min-Ku;Rhee, Chang-Kyu;Kim, Ju-Myoung;Lee, Jin-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 2012
  • In the present work, Al-$B_4C$ composite powders were fabricated using a mechanical milling process and its milling behaviors and mechanical properties as functions of $B_4C$ sizes ( $100{\mu}m$, 500 nm and 50 nm) and concentrations (1, 3 and 10 wt.%) were investigated. For achieving it, composite powders and their compacts were fabricated using a planetary ball mill machine and magnetic pulse compaction technology. Al-$B_4C$ composite powders represent the most uniform dispersion at a milling speed of 200 rpm and a milling time of 240 minutes. Also, the smaller $B_4C$ particles were presented, the more excellent compositing characteristics are exhibited. In particular, in the case of the 50 nm $B_4C$ added compact, it showed the highest values of compaction density and hardness compared with the conditions of $100{\mu}m$ and 500 nm additions, leading to the enhancement its mechanical properties.

Thermoelectric Properties of Mg3-xZnxSb2 Fabricated by Mechanical Alloying (기계적 합금법으로 제조한 Mg3-xZnxSb2의 열전물성)

  • Kim, In-Ki;Jang, Kyung-Wook;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • $Mg_{3-x}Zn_xSb_2$ powders with x = 0-1.2 were fabricated by mechanical alloying in a planetary ball mill with a speed of 350 rpm for 24 hrs and then hot pressed under a pressure of 70 MPa at 773 K for 2 hrs. It was found that there were systematic shifts in the X-ray diffraction peaks of $Mg_3Sb_2$ (x = 0) toward a higher angle with increasing Zn for both the powder and the bulk sample and finally the phase of $Mg_{1.86}Zn_{1.14}Sb_2$ was formed at the Zn content of x = 1.2. The $Mg_{3-x}Zn_xSb_2$ compounds had nano-sized grains of 21-30 nm for the powder and 28-66 nm for the hot pressed specimens. The electrical conductivity of hot pressed $Mg_{3-x}Zn_xSb_2$ increased with increasing Zn content and temperature from 33 $Sm^{-1}$ for x = 0 to 13,026 $Sm^{-1}$ for x = 1.2 at 323 K. The samples for all the compositions from x = 0 to x = 1.2 had positive Seebeck coefficients, which decreased with increasing Zn content and temperature, which resulted from the increased charge carrier concentration. Most of the samples had relatively low thermal conductivities comparable to the high performance thermoelectric materials. The dimensionless figure of merit of $Mg_{3-x}Zn_xSb_2$ was directly proportional to the Zn content except for the compound with Zn = 1.2 at high temperature. The $Mg_{3-x}Zn_xSb_2$ compound with Zn = 0.8 had the largest value of ZT, 0.33 at 723 K.

Synthesis of iron nitrides powders subjected to mechanical alloying (기계적 합금화 방법에 의한 질화철 분말의 합성)

  • 이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.516-520
    • /
    • 1999
  • Mechanical alloying (MA) by planetary type ball mill of pure iron powders was carried out under the ammonia gas atmosphere. The powders of metastable iron nitrides was synthesized up to the nitrogen content of 23 at% N. The observed phases are identified as the super-saturated bcc solid solution for the nitrogen concentration below 14.5 at% N and the non-equilibrium hcp phase stable at high temperature for 20.8 at.% N. Magnetization of Fe-N powders gradually decreases with increasing the N concentration on contrast to the enhancement reported for the bct iron nitrides. Neutron diffraction experiments also provide detailed information concerning the local atomic structure surrounding the nitrogen atoms. The coordination number of Fe atom around a nitrogen atom for the iron nitride containing 9.5 at% N turns out to be 3.9 atoms. This suggests that a nitrogen atom is situated at a center of the tetrahedron formed by iron atoms.

  • PDF

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

Effect of Initial Particle Size Distribution of (K0.5Na0.5)NbO3 Powders on Microstructure of Their Sintered Ceramics ((K0.5Na0.5)NbO3 세라믹스의 초기 분말 입도 분포가 소결체의 미세구조에 미치는 영향)

  • Yoo, Il-Ryeol;Choi, Seong-Hui;Cho, Kyung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • In this study, the effect of the initial particle size distribution (PSD) of (K0.5Na0.5)NbO3 powders on the microstructure of sintered ceramics was investigated. (K0.5Na0.5)NbO3 powders with uni-, bi-, tri-, and quad-modal PSDs were obtained through a planetary ball-mill. For the specimens sintered at 1080℃, the growth of abnormal grains was promoted from the powders exhibiting quad- and tri-modal PSDs with a high content of large particles, resulting in a microstructure in which huge abnormal grains were predominant. However, as the number of peaks in PSD and the overall particle size decreased, the abnormal grain growth was suppressed and the grain growth of small particles started, resulting in a microstructure with a uniform grain size. For the specimens sintered at 1100℃, huge abnormal grains were not observed due to the decrease in the critical driving force for 2D nucleation even when powders with quad- and tri-modal PSDs were used. It was confirmed that when powder with unimodal PSD was used, a uniform microstructure that was not significantly affected by the sintering temperature could be obtained. The results of this study demonstrate that the microstructure of (K0.5Na0.5)NbO3-based ceramics can be controlled by controlling the particle size of the initial powder.