• Title/Summary/Keyword: Planet gear

Search Result 28, Processing Time 0.037 seconds

Dynamic Characteristics of an Epicyclic Gear Train Considering Coriolis Effect (코리올리 효과를 고려한 유성기어열의 동특성)

  • Youn, In-Seong;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.491-498
    • /
    • 2003
  • In this paper, dynamic characteristics of an epicyclic gear train considering Coriolis effect have been studied. High speed transmissions such as in an aircraft engines will be strongly influenced by Coriolis effect. Gear meshes were modelled as springs and dampers with periodically varying mechanical constants with time. The loci of planet gear, sun gear. and carrier were analyzed. Maximum values of mesh forces between sun gear and planet gear(S/P) as well as between planet gear and ring gear(P/R) have been simulated as function of rotating speed.

Characteristic Analysis of Planetary Gear Set of Hydromechanical Transmission System of Agricultural Tractors

  • Park, Young-Jun;Kim, Jeong-Gil;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.145-152
    • /
    • 2016
  • Purpose: This study aims to establish the effect of pinhole position errors in the planet carrier of a planetary gear set (PGS) on load sharing among the planet gears in the hydromechanical transmission (HMT) system of an agricultural tractor. Methods: A simulation model of a PGS with five planet gears was developed to analyze load sharing among the planet gears. The simulation model was verified by comparing i ts r esults w ith those of a model developed in a previous s tudy. The verified simulation model was used to analyze the load-sharing characteristics of the planet gears with respect to the pinhole position error and the input torque to the PGS. Results: Both simulation models had identical load magnitude sequences for the five planet gears. However, the load magnitudes on the corresponding planet gears differed between the models because of the different stiffnesses of the PGS components and the input torques to the PGS. The verified simulation model demonstrated that the evenness of load sharing among the planet gears increases with decreasing pinhole position error and increasing input torque. Conclusions: The geometrical tolerance of the pinhole position should be properly considered during the design of the planet carrier to improve the service life of the PGS and load sharing among the planet gears.

Influence of Manufacturing Errors on the Dynamic Characteristics of Planetary Gear Systems

  • Cheon, Gill-Jeong;Park, Robert G. er
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.606-621
    • /
    • 2004
  • A dynamic analysis using a hybrid finite element method was performed to characterize the effects of a number of manufacturing errors on bearing forces and critical tooth stress in the elements of a planetary gear system. Some tolerance control guidelines for managing bearing forces and critical stress are deduced from the results. The carrier indexing error for the planet assembly and planet runout error are the most critical factors in reducing the planet bearing force and maximizing load sharing, as well as in reducing the critical stress.

An Experimental Study for the Qualitative Effect of Carrier Pin Hole Position Error on Planet Load Sharing of Wind Turbine Three-point Suspension Gearbox (풍력발전기용 3점 지지 기어박스에서 캐리어 핀홀 위치 오차가 유성기어의 하중분할에 미치는 정성적 영향에 관한 실험적 연구)

  • Nam, Ju-Seok;Han, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • In this study, the qualitative effects of the positional error of carrier pin holes on the planet load sharing characteristics of the three-point suspension gearbox of wind turbines were investigated experimentally. A 35-kW gearbox comprising two planetary gear stages and a parallel gear stage and size one-fourth of that of a 2-MW three-point suspension gearbox was used as the test gearbox. The strain gauges attached to the ring gear teeth of the input planetary gear stage were used for the purpose of this study. The applied loading conditions were 50%, 75%, and 100% of the rated torque, and the mesh load factor was used as the load sharing index. The experimental results indicated that both the magnitude and direction of the positional error of pin holes had a significant effect on the planet load sharing characteristics of the three-point suspension gearbox. In addition, an increase in the applied torque results in uniform load sharing.

A study on the dynamic characteristics of an epicyclic gear trains supported with journal bearing (저널베어링으로 지지된 유성기어열의 동특성에 관한 연구)

  • Lee, Jeong-Han;Ryu, Hyeong-Tae;Cheon, Gil-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.198-205
    • /
    • 1998
  • In this paper, the dynamic characteristics of a star type epicyclic gear train have been analyzed. Nonlinear stiffness of a gear pair were obtained considering the bending and shear deformation, Hertz contact deformation, as well as tooth fillet deformation. Nonlinear stiffness coefficients and damping coefficients around the static equilibrium position were obtained by perturbation method. The loci of the planet gears and sun gear were estimated. Tooth meshing forces and bearing reaction forces were calculated. The effects of bearing clearance and oil viscosity on the gear behavior were also analyzed.

Injection Molding Simulation Case of Plastic Gear using Planets (Planets을 사용한 플라스틱 Gear의 사출성형 해석 사례)

  • 김태훈;정우식;허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.131-134
    • /
    • 2001
  • 플라스틱 성형 분야는 최근 급속도로 성장한 첨단기술 분야이다. 플라스틱 성형 분야는 종래 전문가의 경험에 주로 의존해 왔으나 시장의 요구가 점점 고급화, 다양화되어감에 따라 경험적인 내용에만 의존해서는 요구를 충족시키기 어렵게 되었다. 이러한 배경에 의하여 플라스틱 성형 분야에 CAE 기법이 도입되었고 괄목할 만한 발전을 이루고 있다. 본 논문에서는 플라스틱분야에서 개발된 최첨단 상용 CAE 소프트웨어인 Planets을 사용하여 기존의 상용 소프트웨어로서는 충분한 정밀도를 얻기 어려웠던 플라스틱 Gear에 대한 사례연구를 수행하였다.

Influence of Ring Gear Boundary Conditions on the Static Characteristics of Epicyclic Gear Trains with Manufacturing Errors (링기어의 경계조건이 가공오차를 가지는 유성기어열의 정특성에 미치는 영향)

  • Cheon, Gill-Jeong;Oh, Jae-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1775-1780
    • /
    • 2003
  • A hybrid finite element analysis was used to analyze the influence of ring gear rim thickness and spline number on the static properties of an epicyclic gear system with manufacturing errors. Both of these parameters affected the bearing force and critical stress. The effect of changes in the rim thickness on the load sharing between the gears depended on the type of manufacturing error. Ring flexibility improved the load sharing between planetary gears only in systems with planet tooth thickness or planet tangential errors; for other types of error, ring flexibility worsened the load sharing. To improve load sharing, rim thickness and spline number should be controlled within a specific range. The effect of the ring gear boundary condition was more apparent in a system with errors than in a normal system.

  • PDF

Influence of Manufacturing and Assembly Errors on The Static Characteristics of Epicyclic Gear Trains (가공오차 및 조립오차가 유성기어열의 정특성에 미치는 영향)

  • Oh, Jae-Kook;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1597-1606
    • /
    • 2003
  • Static analysis using hybrid finite element(FE) method has been applied to characterize the influence of position, runout and thickness errors of the sun, ring and planet on the bearing forces and critical tooth stress. Some guidelines for tolerance control to manage critical stress and bearing forces are deduced from the results. Carrier indexing error planet assembly and planet tooth thickness error are most critical to reduce planet bearing force and maximize load sharing as well as to reduce critical stresses. Sun and carrier bearing forces due to errors increase several times more than those of normal condition.