• Title/Summary/Keyword: Plane-deformation

Search Result 802, Processing Time 0.034 seconds

Evaluation of Elastic Properties of DLC Films Using Substrate Etching Techniques (기판 Etching 기법을 이용한 DLC 필름의 탄성특성 평가)

  • 조성진;이광렬;은광용;한준희;고대홍
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.813-818
    • /
    • 1998
  • A simple method to measure the elastic modulus E and Poisson's ratio v of diamod-like carbon (DLC) films deposited on Si wafer was suggested. Using the anisotropic etching technique of Si we could make the edge of DLC overhang free from constraint of Si substrate. DLC film is chemically so inert that we could not on-serve any surface damage after the etching process. The edge of DLC overhang free from constraint of Si substrate exhibited periodic sinusoidal shape. By measuring the amplitude and the wavelength of the sinu-soidal edge we could determine the stain of the film required to adhere to the substrate. Since the residual stress of film can be determine independently by measurement of the curvature of film-substrate com-posite we could calculated the biaxial elastic modulus E/(1-v) using stress-strain relation of thin films. By comparing the biaxial elastic modulus with the plane-strain modulus E/(1-{{{{ { v}^{2 } }}) measured by nano-in-dentation we could further determine the elastic modulus and Poisson's ratio independently. This method was employed to measure the mechanical properties of DLC films deposited by {{{{ { {C }_{6 }H }_{6 } }} rf glow discharge. The was elastic modulus E increased from 94 to 169 GPa as the {{{{ { V}_{ b} / SQRT { P} }} increased from 127 to 221 V/{{{{ {mTorr }^{1/2 } }} Poisson's ratio was estimated to be abou 0.16∼0.22 in this {{{{ { V}_{ b} / SQRT { P} }} range. For the {{{{ { V}_{ b} / SQRT { P} }} less than 127V/{{{{ {mTorr }^{1/2 } }} where the plastic deformation can occur by the substrate etching process however the present method could not be applied.

  • PDF

The Active Fault Topography of the Northern Partof the Bulguksa Fault System in Kyungju City, Southeastern Korea (한국 남동부 청주시 불국사단층선 북부의 활단층지형)

  • 윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.34 no.3
    • /
    • pp.231-246
    • /
    • 1999
  • The geomorphic deformation of the alluvial fans by tectonic movement was investigated along the lineaments of the northern part of the Bulguksa fault system. Based on the aerial photographs interpretation and field surveys Bulguksa fault system was identified as an active reverse fault which has displaced the Quaternary fan deposits. Bulguksa fault system strikes for the direction of NW-SE and N-S. These two lineaments of active fault are crossing at Jinty village in Kyungju city and the fault plane forms here almost vertical dip. Thelateral pressures from the two directions have possibly influenced on the formation of the vertical dip at Jinty village. It should be resulted from that the two pressures responsible for the active reverse fault at which the one with the NW-SE strike thrusts the hanging wall of Tohamsan block southwestward and the other pressure with the N-S jstrike thrusts it westwrd over the foot wall of the fan deposits. The marine oxygen isotope stage 8(0.30-0.25 Ma. BP) and stage 6(0.20-0.14 Ma. BP) are presumed to be the ages of high and middle surfaces of the alluvial fan, repectively. The vertical dispiacements on the high surface along the Bulguksa fault system are about 10.5m at Ha-dong, 9.5-10.5m at Jinhyun-dong, and about 10m at Jinty village. And the vertical displacement on the middle surface was measured about 6m high at Ha-dong. The average slip rate of vertical displacements is calculated about 0.03-0.043mm/y.

  • PDF

Surface Geophysical Investigations of a Slope-failure Terrane at Wiri, Andong, Korea (안동시 위리의 사면파괴 지역에 대한 지표 물리탐사)

  • 김지수;한수형;정교철
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.193-204
    • /
    • 2001
  • A geophysical survey was undertaken at Wiri area, Andong, to delineate subsurface structure and reveal the fault zone nearby which heaving of road and subsidence of slope occurred in 1997, especially in the heavy rainy season. Electrical resistivity methods of dipole-dipole array profiling and Schlumberger array sounding and seismic methods of refraction and reflection were performed for the mapping of clay layer, which was interpreted to be the major factor among the reasons of slope deformation. The clay layer was characterized by lower electrical resistivities (< $100{\Omega}{\cdot}m$) and lower seismic velocities (<400 m/s), respectively. The results of electrical and seismic surveys showed that subsidence of slope was probably associated with sliding of wet clay on 18SW/NNW trending fault plane, while heaving of road was probably caused by upward movement of the wet clay through subvertical NNE trending fault.

  • PDF

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

A displacement solution for circular openings in an elastic-brittle-plastic rock

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.489-504
    • /
    • 2017
  • The localized shear and the slip lines are easily observed in elastic-brittle-plastic rock. After yielding, the strength of the brittle rock suddenly drops from the peak value to the residual value, and there are slip lines which divide the macro rock into numbers of elements. There are slippages of elements along the slip lines and the displacement field in the plastic region is discontinuous. With some restraints, the discontinuities can be described by the combination of two smooth functions, one is for the meaning of averaging the original function, and the other is for characterizing the breaks of the original function. The slip lines around the circular opening in the plastic region of an isotropic H-B rock which subjected to a hydrostatic in situ stress can be described by the logarithmic spirals. After failure, the deformation mechanism of the plastic region is mainly attributed to the slippage, and a slippage parameter is introduced. A new analytical solution is presented for the plane strain analysis of displacements around circular openings. The displacements obtained by using the new solution are found to be well coincide with the exact solutions from the published sources.

Microstructural Changes of AA1100 According to the Processing Number of Multi-Axial Diagonal Forging (MADF) (다축대각단조(MADF) 가공횟수에 따른 AA1100의 미세조직 변화)

  • Kwon, S.C.;Kim, S.T.;Kim, D.V.;Kim, M.S.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.63-70
    • /
    • 2019
  • This study investigates the effects of multi-axial diagonal forging (MADF) processing number on the microstructures of AA1100 fabricated using MADF processes. The cast AA1100 was annealed at $400^{\circ}C$ for 3hrs in $N_2$ atmosphere and cut into $25mm^3$ cubes for the MADF processes. The MADF process consist of plane forging with a thickness reduction of 30% and a diagonal forging with a diagonal forging angle of 135 degrees. In order to analyze the microstructural variations based on the number of repetitions, 1, 2, 3 and 4 cycles of the MADF process were performed. AA1100 specimens were successfully deformed without cracking of the surface for up to 4 cycles of MADF. The grain size, average misorientation and average grain orientation spread (GOS) of MADF processed materials were analyzed using EBSD technique. The results showed that MADF process effectively refined the microstructure of AA1100 with an initial average grain size of $337.4{\mu}m$. The average grain sizes of specimens which were MADF processed for 2, 3, 4 cycles were refined to be $1.9{\mu}m$, $1.6{\mu}m$, $1.4{\mu}m$, respectively. The grain refinement appeared saturated when AA1100 got MADF processed over 2 cycles. When the specimen was subjected to two or more cycles of MADF, the degree of decrease in the average grain size drastically decreased with an increase in the number of cycle due to the softening phenomena such as dynamic recovery or dynamic recrystallization during processing.

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading (주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • The failure mode of piping systems due to seismic loads is the low-cycle fatigue failure with ratcheting, and it was found that the element in which nonlinear behavior is concentrated and damage occurs is the elbow. In this study, to quantitatively express the failure criteria for a pipe elbow of SCH40 3-inch carbon steel under low-cycle fatigue, the limit state was defined as leakage, and the in-plane cyclic loading test was conducted. For the carbon steel pipe elbow, which is the vulnerable part to seismic load of piping systems, the damage index was represented using the moment-deformation angle relationship, and it was compared and analyzed with the damage index calculated using the force-displacement relationship. An attempt was made to quantitatively express the limit state of the carbon steel pipe elbow involving leakage using the damage index, which was based on the dissipated energy caused by repeated external forces.

Stiffness Enhancement of Piecewise Integrated Composite Beam using 3D Training Data Set (3차원 학습 데이터를 이용한 PIC 보의 강성 향상에 대한 연구)

  • Ji, Seungmin;Ham, Seok Woo;Choi, Jin Kyung;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.394-399
    • /
    • 2021
  • Piecewise Integrated Composite (PIC) is a new concept to design composite structures of multiple stacking angles both for in-plane direction and through the thickness direction in order to improve stiffness and strength. In the present study, PIC beam was suggested based on 3D training data instead of 2D data, which did offer a limited behavior of beam characteristics, with enhancing the stiffness accompanied by reduced tip deformation. Generally training data were observed from the designated reference finite elements, and preliminary FE analysis was conducted with respect to regularly distributed reference elements. Also triaxiality values for each element were obtained in order to categorize the loading state, i.e. tensile, compressive or shear. The main FE analysis was conducted to predict the mechanical characteristics of the PIC beam.