• 제목/요약/키워드: Plane-Stress Fracture Toughness

Search Result 39, Processing Time 0.028 seconds

Evaluation of Fracture Toughness considering Constraint Effect of Reactor Pressure Vessel Nozzle (원자로압력용기 노즐부 구속효과를 고려한 파괴인성 평가)

  • Kweon, Hyeong Do;Lee, Yun Joo;Kim, Dong Hak;Lee, Do Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Actual stress distributions in the nozzle of a pressure vessel may not be in plane strain condition, implying that the crack-tip constraint condition may be relaxed in the nozzle. In this paper, a methodology for evaluating the fracture toughness of the ASME Code is presented considering the relaxation of the constraint effect in the nozzle of the reactor pressure vessel. The crack-tip constraint effect is quantified by the T-stress. The equation, which represent the relation between the fracture toughness in the lower constraint condition and the plane strain fracture toughness, is derived using the T-stress. This equation is similar to the method for evaluating the fracture toughness of the Master Curve for low constraint conditions. As a result of evaluating the fracture toughness considering the constraint effect in the reactor inlet, outlet and direct injection nozzles using the proposed equation, it was confirmed that the fracture toughness in the nozzles is higher than the plane strain fracture toughness. Applying the proposed evaluation methodology, it is possible to reflect the relaxation of the constraint effect in the nozzles of the reactor pressure vessel, therefore, the safe operation area on the pressure-temperature limit curve can be prevented from being excessively limited.

Characterization of the fracture toughness and fatigue crack propagation of reduced activation ferritic steel(RAFs) (저방사화 페라이트강(RAFs)의 파괴인성 및 피로균열진전 특성)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Kim, Sa-Wong;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.13-18
    • /
    • 2004
  • The objective of this study is to investigate fracture toughness and fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (RAFs) JLF-I. The fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The fatigue crack propagation behavior of the JLF-I steel was investigated by the constant-amplitude loading test for the stress ratios R=O.I, 0.3 and 0.5 respectively. The effects of stress ratios and specimen size on the fatigue crack growth behaviors for JLF-I steel were discussed within the Paris law. The test results showed the standard CT specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen. The fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. The fatigue crack propagation behavior of this material were evaluated by using a half size specimen.

  • PDF

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Fracture toughnesses of thin sheet materials by using CT specimens (CT 시편을 이용한 박판재료의 파괴인성 특성)

  • Lee, Eok-Seop;Lee, Yun-Pyo;Gang, In-Mo;Kim, Seon-Yong;Kim, Seung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2090-2095
    • /
    • 1997
  • The plane stress fracture toughness for thin aluminum alloy(2024-T3 and 7075-T6) specimens are characterized by using compact-tension (CT) specimens. Anti-buckling plates were fabricated on both sides of the thin CT specimens to prevent the buckling phenomena which caused by the 45.deg. C plastic yielding at the crack tip under the plane stress condition. The plane stress fracture toughnesses determined by three different procedures are compared with each others. The plane stress fracture toughnesses are also compared with a few published values which were determined by using center-cracked panel specimens.

Experimental Study on Plane Stress Fracture Toughness and Fatigue Crack Propagation of SS304 and SS316 (SS304와 SS316의 평면응력 파괴인성치 측정과 피로 균열 전파에 대한 실험적 연구)

  • Lee, O.S.;Han, Y.S.;Yoo, S.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.61-69
    • /
    • 1997
  • A simple and relatively new experimental method is proposed to estimate the plane stress fracture toughness by using compact tension (CT) specimen. The anti-buckling plates (fabricated to prevent the buckling caused by the 45 plastic yielding around crack tip under the plane stress condition) help to determine the relatively accurate plane stress fracture toughness of two stainless steels (SS304 and SS316). The fatigue crack propagation behavior of two stainless steels under two different loading conditions such as 10Hz and 5Hz frequency fatigue loadings was investigated by using image analysis technique (IAT) which renders several technical advantages over various conventional measuring methods. It was found that the IAT could be used to estimate fatigue crack lengths more effectively. Furthermore, it was suggested that we might control the measuring time interval for fatigue crack propagation by nearly automatically controlled technical process with the help of IAT.

  • PDF

A Study on the Behavior of the Plane Stress Fracture Toughness - About the Compact Tension Specimen- (平面應力 破壞靭性値 擧動에 관한 硏究)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.937-946
    • /
    • 1986
  • In this paper, the plane stress fracture toughness of low carbon steel with 3mm thickness is investigated for various specimen widths and crack ratios using the J integral. The experiments is carried out for the compact tension(CT) specimen on an Instron machine. For materials that may be approximated by the Ramberg and Osgood stress strain law, the relevant crack parameter like the J integral and load line displacement are approximately normalized. Crack driving forces in terms of J integral is computed using the above estimation scheme. Abtained results are summarized as follows. (1) The plane stress fracture toughness, J$_{c}$, is almost constant in the range 50-70mm of width. Hence J$_{c}$ can be obtained by using smaller specimen than ASTM standard. (2) Yoon's and Simpson's formular which considers crack growth in obtaining J integral show more consevative J than Rice's and Merkle's (3) J$_{c}$ is almost constant in the range 0.499-0.701 crack ratios tested. J$_{c}$ obtained by using Kumar's formular is 28.14kgf/mm for base metal specimen and 32.51kgf/mm for annealed. (4) Comparison of the prediction with actual experimental measurements by Yoon's formular show good agreement for several different-size specimens.

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS (치과용 복합레진의 파괴인성에 관한 실험적 연구)

  • Park, Jin-Hoon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

Variation of the Fracture Resistance Curve with the Change of a Size in the CT Specimen (CT시험편의 크기 변화에 따른 파괴저항곡선의 변화)

  • Seok, Chang-Seong;Kim, Su-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2963-2971
    • /
    • 2000
  • In order to obtain more realistic fracture resistance curve, research is currently underway to introduce new parameter and to quantify the constraint effect. The objective of this study is to investigate the relationship between the constraint effect of a size(plane size and thickness) and the fracture resistance curve. In this paper fracture toughness tests were performed with various plane size and various thickness of specimens in two materials. The test results showed that the effects of plane size in th4 J-R curve were significant and the curve was risen with an increase in plane size. However, relatively weak influence was observed form the change of the specimen thickness and size. The stress fields near the crack tip of th specimen is close to the HRR field according to increasing the plane size and Q stress appears different value according to material properties and the plane size.

Finite Element Simulation of Fracture Toughness Test (파괴인성시험의 유한요소 시뮬레이션)

  • Chu, Seok Jae;Liu, Conghao
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.491-496
    • /
    • 2013
  • Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found.

Development of Austempered Ductile Iron With High Strength and High Toughness for Automotive Parts (고강도 ADI 의 자동차 부품개발에 관한 연구)

  • Kim, Won-Yong;Lee, Young-Sang;Kim, Gwang-Bae;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.408-416
    • /
    • 1990
  • The application of this new design approach called fracture mechanics allow one to determine the maximum allowable stress from the knowledge of the largest expected flow size and the plane strain fracture toughness of a material. In this study we examined the relation between retained austenite, mechanical property and fracture toughness accompanied by austempering heat treatment. Fracture toughness values and retained austenite volume were higher with the ADI(austempered ductile iron) which were austempered at $380^{\circ}C$ than austempered at $320^{\circ}C$. Additionally, fracture toughness values were increased for 1~2 hour austempering time but it was slowly decreased for 5 hour ADI maintaining the predominant fracture toughness($K_{IC}:83MPa{\sqrt{m}}$) is obtained following condition, namely, austempering temperature and time ($380^{\circ}C$ and 1 hour).

  • PDF