• 제목/요약/키워드: Plane frame analysis

검색결과 182건 처리시간 0.023초

Fiber orientation distribution of reinforced cemented Toyoura sand

  • Safdar, Muhammad;Newson, Tim;Waseem, Muhammad
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.67-73
    • /
    • 2022
  • In this study, the fiber orientation distribution (FOD) is investigated using both micro-CT (computerized tomography) and image analysis of physically cut specimens prepared from Polyvinyl Alcohol (PVA) fiber reinforced cemented Toyoura sand. The micro-CT images of the fiber reinforced cemented sand specimens were visualized in horizontal and vertical sections. Scans were obtained using a frame rate of two frames and an exposure time of 500 milliseconds. The number of images was set to optimize and typically resulted in approximately 3000 images. Then, the angles of the fibers for horizontal sections and in vertical section were calculated using the VGStudio MAX software. The number of fibers intersecting horizontal and vertical sections are counted using these images. A similar approach was used for physically cut specimens. The variation of results of fiber orientation between micro-CT scans and visual count were approximately 4-8%. The micro-CT scans were able to precisely investigate the fiber orientation distribution of fibers in these samples. The results show that 85-90% of the PVA fibers are oriented between ±30° of horizontal, and approximately 95% of fibers have an orientation that lies within ±45° of the horizontal plane. Finally, a comparison of experimental results with the generalized fiber orientation distribution function 𝜌(θ) is presented for isotropic and anisotropic distribution in fiber reinforced cemented Toyoura sand specimens. Experimentally, it can be seen that the average ratio of the number of fibers intersecting the finite area on a vertical plane to number of fibers intersecting the finite area on a horizontal plane (NVtot/NHtot) cut through a sample varies from 2.08 to 2.12 (an average ratio of 2.10 is obtained in this study). Based up on the analytical predictions, it can be seen that the average NVtot/NHtot ratio varies from 2.13 to 2.17 for varying n values (an average ratio of 2.15).

전단변형효과를 고려한 부분강절 평면뼈대구조의 안정성 해석 (Stability Analysis of Shear-Flexible and Semi-Rigid Plane Frames)

  • 민병철;민동주;정명락;김문영
    • 대한토목학회논문집
    • /
    • 제31권1A호
    • /
    • pp.9-18
    • /
    • 2011
  • 구조부재의 연결은 강절(rigid), 활절(hinge) 그리고 부재 간의 상대적인 회전이 허용되는 부분강절(semi-rigid)로 구분될 수 있다. 본 연구에서는 부분강절을 탄성회전스프링으로 가정하여 부재 단부에 적용시킨 평면 뼈대구조에 대하여 전단변형을 고려한 엄밀한 접선강도행렬을 유도하고 이를 다시 탄성강도행렬과 기하학적 강도행렬로 분리?유도함으로써 부분강절을 갖는 평면 뼈대구조물의 안정성해석을 위한 일반화된 해석방법을 제시하고자 한다. 이를 위하여, 보-기둥부재의 좌굴조건을 만족시키는 처짐함수로부터 안정함수(stability function)를 유도하고, 횡변위(sway)를 고려한 힘-변위관계와 적합조건을 고려하여 정확한 접선강도행렬을 제시하였다. 본 연구의 타당성을 입증하고 부분강절 뼈대구조의 전단거동 특성을 파악하기 위하여, 다양한 수치해석 예제에 대해 타 연구자 해석 결과와 본 연구의 안정성 해석결과를 비교하여 제시함으로서 전단변형과 부분강절이 구조물의 좌굴강도에 미치는 영향을 조사한다.

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Relationship between vertical components of maxillary molar and craniofacial frame in normal occlusion: Cephalometric calibration on the vertical axis of coordinates

  • Han, Ah-Reum;Kim, Jongtae;Yang, Il-Hyung
    • 대한치과교정학회지
    • /
    • 제51권1호
    • /
    • pp.15-22
    • /
    • 2021
  • Objective: The aim of this study was to evaluate the correlation between the vertical position of maxillary first molar and vertical skeletal measurements in lateral cephalograms by using new linear measurements on the vertical axis of coordinates with calibration. Methods: The vertical position of maxillary first molar (U6-SN), and the conventionally used variables (ConV) and the newly derived linear variables (NwLin) for vertical skeletal patterns were measured in the lateral cephalograms of 103 Korean adults with normal occlusions. Pearson correlation analyses and multiple linear regression analyses were performed with and without calibration using the anterior and posterior cranial base (ACB and PCB, respectively) lengths to identify variables related to U6-SN. Results: The PCB-calibrated statistics showed the best power of explanation. ConV indicating skeletal hyperdivergency was significantly correlated with U6-SN. Six NwLin regarding the position of palatal plane were positively correlated with U6-SN. Each multiple linear regression analysis generated a two-variable model: sella and nasion to palatal plane. Among the three models, the PCB-calibrated model yielded highest adjusted R2 value, 0.880. Conclusions: U6-SN could be determined by the vertical position of the maxilla, which could then be used to plan the amount of molar intrusion and estimate its clinical stability. Cephalometric calibration on the vertical axis of coordinates by using PCB for vertical linear measurements could strengthen the analysis itself.

A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

  • Kim, Jung J.;Fan, Tai;Reda Taha, Mahmoud M.
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.503-516
    • /
    • 2011
  • Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE) method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

Minimum-weight design of non-linear steel frames using combinatorial optimization algorithms

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • 제7권3호
    • /
    • pp.201-217
    • /
    • 2007
  • Two combinatorial optimization algorithms, tabu search and simulated annealing, are presented for the minimum-weight design of geometrically non-linear steel plane frames. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) specification, maximum and interstorey drift constraints and size constraints for columns were imposed on frames. The stress constraints of AISC Allowable Stress Design (ASD) were also mounted in the two algorithms. The comparisons between AISC-LRFD and AISC-ASD specifications were also made while tabu search and simulated annealing were used separately. The algorithms were applied to the optimum design of three frame structures. The designs obtained using tabu search were compared to those where simulated annealing was considered. The comparisons showed that the tabu search algorithm yielded better designs with AISC-LRFD code specification.

충격하중을 받는 Euler기둥의 동적좌굴 해석 (Dynamic Instability Analysis of Euler Column under Impact Loading)

  • 김형열
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.187-197
    • /
    • 1996
  • Explicit 직접적분법 알고리듬을 사용하여 Euler기둥의 동적 좌굴거동을 해석할 수 있는 수치해석법을 제시하였다. 평면뼈대 유한요소를 기하학적 비선형 거동과 전체좌굴의 영향을 고려할 수 있도록 보의 대변위 이론으로부터 유도하였고, central difference method를 바탕으로 해석 알고리듬을 개발하였다. 다양한 형상, 크기, 재하시간을 갖는 충격하중에 대하여 Euler기둥의 동적좌굴거동과 고유치 문제를 해석하였다. 수치해석 예제를 통하여 본 연구의 결과를 검증하였다.

  • PDF

Lateral Offset Estimation Based on Detection of Lane Markings

  • Jiang, Gang-Yi;Park, Jong-Wook;Song, Byung-Suk;Bae, Jae-Wook
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.769-772
    • /
    • 2000
  • In this paper, a new lateral offset estimation method, based on image processing techniques, is proposed for driver assistant system. A new description on lane markings in the image plane is presented, and its properties are discussed and used to detect lane markings. Multi-frame lane detection and analysis are adopted to improve the proposed lateral control method. An algorithm for obstacle detection is also developed. Experimental results show that the proposed method performs lateral control effectively.

  • PDF

Partitioned analysis of nonlinear soil-structure interaction using iterative coupling

  • Jahromi, H. Zolghadr;Izzuddin, B.A.;Zdravkovic, L.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.33-51
    • /
    • 2008
  • This paper investigates the modelling of coupled soil-structure interaction problems by domain decomposition techniques. It is assumed that the soil-structure system is physically partitioned into soil and structure subdomains, which are independently modelled. Coupling of the separately modelled partitioned subdomains is undertaken with various algorithms based on the sequential iterative Dirichlet-Neumann sub-structuring method, which ensures compatibility and equilibrium at the interface boundaries of the subdomains. A number of mathematical and computational characteristics of the coupling algorithms, including the convergence conditions and choice of algorithmic parameters leading to enhanced convergence of the iterative method, are discussed. Based on the presented coupling algorithms a simulation environment, utilizing discipline-oriented solvers for nonlinear structural and geotechnical analysis, is developed which is used here to demonstrate the performance characteristics and benefits of various algorithms. Finally, the developed tool is used in a case study involving nonlinear soil-structure interaction analysis between a plane frame and soil subjected to ground excavation. This study highlights the relative performance of the various considered coupling algorithms in modelling real soil-structure interaction problems, in which nonlinearity arises in both the structure and the soil, and leads to important conclusions regarding their adequacy for such problems as well as the prospects for further enhancements.

기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석 (Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics)

  • 이경수;한상을
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.429-438
    • /
    • 2011
  • 본 연구에서는 스트라치 시스템의 긴장설치과정 및 극한하중 해석을 수행하기 위한 명시적 해석법을 제안하였다. 스트라치 시스템은 Stressed-Arch에서 유래한 용어로 슬리브와 갭이 도입된 유동하현재 내부의 긴장재에 초기장력을 도입함으로써 갭이 점차 닫히게 되며, 이에 따라 상현재에 곡률이 도입되면서 전체 구조물이 상승하여, 최종적인 아치형태의 구조물을 형성하는 독창적인 구조시스템이다. 스트라치 시스템의 초기장력 도입과정을 긴장설치(stress-erection) 과정이라 하며, 초기곡률의 도입에 따라 유동 상현재에는 과도한 초기변형이 발생하여 소성거동에 의한 강체회전이 발생하는 불안정 구조물이 된다. 본 연구에서는 이러한 스트라치 시스템의 불안정 거동특성을 해석하기 위해서 강성행렬을 사용하지 않는 명시적 동적이완법을 사용하여 비선형 평형방정식의 해를 구하였고, 대변위 및 단면의 재료적 특성을 반영할 수 있는 필라맨트 보요소를 사용하여 연속된 상현재의 비선형 거동특성을 분석하였다. 필라맨트 보요소의 단면은 다수의 1차원 필라맨트로 구성되며, 각각의 필라맨트에 대해서 다양한 재료모델을 적용할 수 있다. 본 연구에서는 비선형 재료모델인 Ramberg-Osgood모델 및 Bi-linear 탄소성 모델을 적용하여 긴장설치 및 극한하중 해석을 수행하였고, 그 결과를 이전의 실험적 연구결과와 비교 분석하였다. 본 연구의 해석결과는 이전의 실험적 연구결과와 유사하였으며, 명시적 해석법의 특성상 효율적으로 후좌굴거동 특성까지 해석할 수 있었다.