• 제목/요약/키워드: Plane Wave Theory

검색결과 116건 처리시간 0.018초

Energy flow analysis of out-of-plane vibration in coplanar coupled finite Mindlin plates

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.174-194
    • /
    • 2015
  • In this paper, an Energy Flow Analysis (EFA) for coplanar coupled Mindlin plates was performed to estimate their dynamic responses at high frequencies. Mindlin plate theory can consider the effects of shear distortion and rotatory inertia, which are very important at high frequencies. For EFA for coplanar coupled Mindlin plates, the wave transmission and reflection relationship for progressing out-of-plane waves (out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave) in coplanar coupled Mindlin plates was newly derived. To verify the validity of the EFA results, numerical analyses were performed for various cases where coplanar coupled Mindlin plates are excited by a harmonic point force, and the energy flow solutions for coplanar coupled Mindlin plates were compared with the classical solutions in the various conditions.

임의의 각으로 연성된 반무한 Mindlin 판의 파동전달해석 (Wave Transmission Analysis of Semi-infinite Mindlin Plates Coupled at an Arbitrary Angle)

  • 박영호
    • 한국소음진동공학회논문집
    • /
    • 제24권12호
    • /
    • pp.999-1006
    • /
    • 2014
  • Mindlin plate theory includes the shear deformation and rotatory inertia effects which cannot be negligible as exciting frequency increases. The statistical methods such as energy flow analysis(EFA) and statistical energy analysis(SEA) are very useful for estimation of structure-borne sound of various built-up structures. For the reliable vibrational analysis of built-up structures at high frequencies, the energy transfer relationship between out-of-plane waves and in-plane waves exist in Mindlin plates coupled at arbitrary angles must be derived. In this paper, the new wave transmission analysis is successfully performed for various energy analyses of Mindlin plates coupled at arbitrary angles.

2차원 Beach에서 쇄파의 시뮬레이션을 위한 수치계산기법의 비교 (Comparison of Numerical Methods for Two-dimensional Wave Breaker on a Plane Beach of Constant Slope)

  • 정광열;이영길
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.119-125
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory and solitary wave theory are employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with each other. The marker-density method is better then the hybrid method. Also they are compared with other existing experimental results. The Agreement between the experimental data and the computation results is good.

  • PDF

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

Effect of generalized thermoelasticity materials with memory

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.597-611
    • /
    • 2007
  • Many works have been done in classical theory of thermoelasticity in materials with memory by researchers like Nunziato, Chen and Gurtine and many others. No work is located in generalized thermoelasticity regarding materials with memory till date. The present paper deals with the wave propagation in materials with memory in generalized thermoelasticity. Plane progressive waves and Rayleigh waves have been discussed in details. In the classical theory of heat conduction it was observed that heat propagates with infinite speed. This paradox has been removed in the present discussion. The set of governing equations has been developed in the present analysis. The results of wave velocity and attenuation coefficient corresponding to low and high frequency have been obtained. For thermal wave the results show appreciable differences with those in the usual thermoelasticity theory.

풍력 터빈에 의한 전자기 간섭 환경 문제의 수학적 모델링 (Mathematical Models of Environmental Problems on the Electromagnetic Interference for Wind Turbines)

  • 장세명
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.911-918
    • /
    • 2009
  • Electromagnetic interference (EMI) is defined as the interaction phenomena of electromagnetic waves scattered from a large structure or complex terrain. In this study, the propagation of linear wave is modeled with ray theory, direct simulation Monte Carlo (DSMC), and some classical theories on flat plates. The wave physics of reflection, refraction, and diffraction are simulated for the investigation of front and back scattering of the one-dimensional plane wave from a tower with ray theory and DSMC, respectively. The effect of rotating disk idealized from the real wind-turbine blades is modeled with a simplified version of the classical electromagnetic theory as well as DSMC based on the ray theory.

Dichromated Gelatin 박막을 이용한 홀로그래픽 Zone Plate 제작 및 해석 (Fabrication of holographic zone plate using dichromated gelatin hologram)

  • 임용석;이영락;곽종훈;최옥식
    • 한국광학회지
    • /
    • 제8권1호
    • /
    • pp.19-25
    • /
    • 1997
  • Agfa 8E75HD 사진건판에서 얻은 dichromated gelatin(DCG) 박막에 구면파와 평면파를 간섭시켜 holographic zone plate(HZP)를 만들었다. DCG박막의 비서형적인 광학특성들을 고려하여 HZP의 이론식을 유도하였다. 이 이론식에 의한 HZP의 초점거리를 거리는 f. f/2, f/3, f/4, ... 였으며, 실험적으로도 평면파를 입사하여 6개까지의 해당 초점들을 관측하였다. 칼날 주사 방법으로 측정한 첫 번째 재생 초점 근처에서의 빔의 모양은 Gaussian 분포를 가짐을 확인하였다.

  • PDF

Wave propagation at free surface in thermoelastic medium under modified Green-Lindsay model with non-local and two temperature

  • Sachin Kaushal;Rajneesh Kumar;Indu Bala;Gulshan Sharma
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.209-218
    • /
    • 2024
  • The present paper is focused on the study of the propagation of plane waves in thermoelastic media under a modified Green-Lindsay (MG-L) model having the influence of non-local and two temperature. The problem is formulated for the considered model in dimensionless form and is explained by using the reflection phenomenon. The plane wave solution of these equations indicates the existence of three waves namely Longitudinal waves (LD-Wave), Thermal waves (T-wave), and Shear waves (SV-wave) from a stress-free surface. The variation of amplitude ratios is computed analytically and depicted graphically against the angle of incidence to elaborate the impact of non-local, two temperature, and different theories of thermoelasticity. Some particular cases of interest are also deduced from the present investigation. The present study finds applications in a wide range of problems in engineering and sciences, control theory, vibration mechanics, and continuum mechanics.

Reflection of plane waves from the boundary of a thermo-magneto-electroelastic solid half space

  • Singh, Baljeet;Singh, Aarti
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.143-159
    • /
    • 2021
  • The theory of generalized thermo-magneto-electroelasticity is employed to obtain the plane wave solutions in an unbounded, homogeneous and transversely isotropic medium. Reflection phenomena of plane waves is considered at a stress free and thermally insulated surface. For incidence of a plane wave, the expressions of reflection coefficients and energy ratios for reflected waves are derived. To explore the characteristics of reflection coefficients and energy ratios, a quantitative example is set up. The half-space of the thermo-magneto-electroelastic medium is assumed to be made out of lithium niobate. The dependence of reflection coefficients and energy ratios on the angle of incidence is illustrated graphically for different values of electric, magnetic and thermal parameters.

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

  • Kiani, Keivan;Gharebaghi, Saeed Asil;Mehri, Bahman
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.65-76
    • /
    • 2017
  • Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.