• Title/Summary/Keyword: Plane Wave Analysis

Search Result 257, Processing Time 0.032 seconds

Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발)

  • Lee, Jeong-Gi;Heo, Gang-Il;Jin, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

On the Most Unstable Disturbance of Channel Flows and Blasius Flow (관 유동과 Blasius 유동에서 가장 불안정한 교란에 관하여)

  • Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.766-772
    • /
    • 2003
  • The pseudospectral method for stability analysis was used to find the most influential disturbance mode for transition of plane channel flows and Blasius flow at their critical Reynolds numbers. A number of various oblique disturbance waves were investigated for their pseudospectra and resolvent norm contours in each flow, and an exhaustive search method was employed to find the disturbing waves to which the flows become most unstable. In plane Poiseuille flow an oblique disturbance with a wavelength of 3.59h (where h is the half channel width) at an angle $28.7^{\circ}$ was found to be the most influential for the flow transition to turbulence, and in plane Couette flow it is an oblique wave with a wavelength of 3.49h at an angle of $19.4^{\circ}$. But in Blasius flow it was found that the most influential mode is a normal wave with a wavelength of $3.44{\delta}_{999}$. These results imply that the most influential disturbance mode is closely related to the fundamental acoustic wave with a certain shear sheltering in the respective flow geometry.

Investigation on the propagation mechanism of explosion stress wave in underground mining

  • Wang, Jiachen;Liu, Fei;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.295-305
    • /
    • 2019
  • The bedding plane has a significant influence on the effect of blasting fragmentation and the overall performance of underground mining. This paper explores the effects of fragmentation of the bedding plane and different angles by using the numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include a dynamic compressive and tensile failure which is applied to simulate the fractures generated by the explosion. Firstly, the cracks propagation with the non-bedding plane in the coal with two boreholes detonated simultaneously is calculated and the particle velocity and maximum principal stress at different points from the borehole are also discussed. Secondly, different delay times between the two boreholes are calculated to explore its effects on the propagation of the fractures. The results indicate that the coal around the right borehole is broken more fully and the range of the cracks propagation expanded with the delay time increases. The peak particle velocity decreases first and then increases with the distance from the right borehole increasing. Thirdly, different angles between the bedding plane and the centerline of the two boreholes and the transmission coefficient of stress wave at a bedding plane are considered. The results indicated that with the angles increase, the number of the fractures decreases while the transmission coefficient increases.

Plane Wave Scattering Induced Resonant Modes of Spherical Resonator (구형태 공진기에서의 평면파 산란 공진모드)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1260-1263
    • /
    • 2013
  • Plane wave scattering from a spherical resonator is calculated by solving the combined field integral equation (CFIE) with Rao-Wilton-Glisson (RWG) basis functions and the moment method. The calculations show that magnetic and electric dipoles are found at resonant modes. These characteristics are confirmed by radiation patterns in the far field region. In addition, an analysis of a magnetodielectric sphere is discussed.

NUMERICAL INVESTIGATION ON THE SAFE SUPERSONIC AIR-LAUNCHING ROCKET SEPARATION FROM THE MOTHER PLANE (안전한 초음속 공중발사를 위한 삼차원 로켓 주위의 모선분리 유동 해석)

  • Ji Y.M.;Lee J.W.;Park J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-259
    • /
    • 2005
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket from the mother plane. Three-dimensional Euler and Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from two cases of mother plane configuration: one is an idealized ogive-cylinder body and the other is a real F-4E Phantom. The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Synthesis of Earthquake Ground Motion by Combining Stochastic Line Source Model with Elastic Wave Propagation Analysis Method in a Layered Half Space (추계학적 선진원 모델과 층상반무한체에서의 탄성파 전파 해석법에 의한 지진 지반운동 합성)

  • KIM, Jae Kwan;KWON, Ki Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.97-105
    • /
    • 1996
  • A Stochastic line source model is developed to simulate the seismic wave field generated during the rupture propagation process along a fault plane of which length is much larger than its width. The fault plane is assumed to consist of randomly distributed slip zones and barriers and each slip zone is modeled as a point source. By combining the newly developed source model with wave propagation analysis method in a layered 3-D visco-elastic half space, synthetic seismograms are obtained. The calculated accelerograms due to vertical dip slip and strike slip line sources are presented.

  • PDF

A Study of Power Absorption in Human Head Exposed to Plane Wave (평면파에 노출된 인체 두부의 전력흡수 해석)

  • 이애경;조광윤;이혁재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.665-680
    • /
    • 1997
  • The specific absorption rate (SAR) distributions in various models of the human head have been analyzed when the models are exposed to 350 MHz and 900 MHz plane waves. The numerical analysis is performed with the finite-difference time-domain (FDTD) method. A homogeneous sphere including a cylinderical neck, a homogeneous head shaped model, and a heterogeneous realistic model are used as models of human head. The incident plane wave used for these calculations is propagating from the front to the back or from the back to the front of the head model, with its E-field vector orientation being parallel to the major length of the body. The specific findings are: 1) the average SARs of the three models are similar mutually but the local SARs of them differ greatly mutually; 2) the power is deposed more deeply in the head at 350 MHz, which is roughly the resonant frequency of a human head, than at 900 MHz; 3) for a plane wave propagating from the back, "hot spot" is found in the neck region, not in the head; 4) for a plane wave propagating from the front, "hot spot" is found in the nose at 900 MHz, and in the upper part of the lip and the jaw region at 350 MHz.

  • PDF

Adaptive Short-time Fourier Transform for Guided-wave Analysis (유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환)

  • Hong, Jin-Chul;Sun, Kyung-Ho;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.266-271
    • /
    • 2005
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the present method, the flexural wave signals measured in a plate were analyzed.

Adaptive Short-time Fourier Transform for Guided-wave Analysis (유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환)

  • Sun, Kyung-Ho;Hong, Jin-Chul;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.606-610
    • /
    • 2004
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the proposed method, the flexural wave signals measured in a plate were analyzed.

  • PDF

Numerical Analysis of Wave Transformation of Permeable Breakwater Permitting Wave Overtopping (월파를 허용하는 투과성 방파제의 파랑변형에 관한 수치해석)

  • 김도삼;이광호
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • In the past, ports have been mainly developed in natural harbors but nowadays ports are built wherever they can be economically justified. Therefore, construction of breakwater in area that establishment of structure is disadvantageous is risen according to the change of conditions to the location for ports. In case of building gravity breakwater in such point, need that plane shapes of more reasonable section permitting wave overtopping is necessary. One of the earliest methods for solving unsteady incompressible flow including free surfaces is the MAC(Marker And Cell) method by Harlow and Welch (1965). Recently. VOF(Volume Of Fluid) method to improve several drawbacks of MAC method is suggested by Hirt and Nichols(1981) and utilized extensively in fields of hydrodynamics. Wave overtopping phenomenon is simulated including wave breaking for permeable breakwater by numerical analysis and investigated features of wave overtopping behind structure using VOF method.