• 제목/요약/키워드: Plane Sheet Model

검색결과 48건 처리시간 0.026초

입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구 (Mechanical Properties of Particle and Fiber Reinforced SMC Composites)

  • 정현조;윤성호
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF

판재의 초기 이방성이 스트레칭 성형에 미치는 영향 (Effects of Initial Anisotropy in the Plane Sheet on Stretching Process)

  • 배석용;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.242-245
    • /
    • 1998
  • Effects of the anisotrpy due to the initial textures in the plane sheet on plane strain punch stretching has been investigated. In this study, the anisotropy from textures in the sheet is incoporated into the finite element process model by combining the theory of crstal plasticity. Three different textures such as random texture, plane strain compression texture and cube texture are considered. Variations of puch loads as well as thickness distributions of the sheets with three different initial textures are investigated.

  • PDF

상대 좌표를 이용한 종이류 모델링 기법 (Three-Dimensional Sheet Modeling Using Relative Coordinate)

  • 조희제;배대성
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Simulation and Experimental Methods for Media Transport System: Part I, Three-Dimensional Sheet Modeling Using Relative Coordinate

  • Cho, Heui-Je;Bae, Dea-Sung;Choi, Jin-Hwan;Lee, Soon-Geul;Rhim, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.305-311
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구 (Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate)

  • 배대성;조희제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF

이방성 금속판재의 가공경화에 따른 직교대칭축의 회전 (Rotation of Orthotropy Axes with Work Hardening of Anisotropic Sheet Metals)

  • 김권희;인정제
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.320-326
    • /
    • 1996
  • Based upon experimental observations the authors have shown in the previous studies that the orientations of orthotropy axes of anisotropic sheet metals are subjected to change during tensile loading at angles to the rolling direction. To predict the rotations of orthotropy axes under general plane stress conditions, a simple phenomenological model is proposed which accounts for the effect of work hardening. Predictions from the model are compared against the experiments for 0%, 3%, and 6% of 1st tensile prestrains in the rolling direction and 2nd tensile prestrains at 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$ to the 1st prestrains axis. The model showed good agreements with the experimental observations. A new interpretation of the experimental data is suggested regarding the rotations of orthotropy axes.

  • PDF

Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Singhal, Abhinav;Toghroli, Ali
    • Advances in nano research
    • /
    • 제8권4호
    • /
    • pp.265-276
    • /
    • 2020
  • A study that primarily focuses on nonlocal strain gradient plate model for the sole purpose of vibration examination, for graphene sheets under linearly variable in-plane mechanical loads. To study a better or more precise examination on graphene sheets, a new advance model was conducted which carries two scale parameters that happen to be related to the nonlocal as well as the strain gradient influences. Through the usage of two-variable shear deformation plate approach, that does not require the inclusion of shear correction factors, the graphene sheet is designed. Based on Hamilton's principle, fundamental expressions in regard to a nonlocal strain gradient graphene sheet on elastic half-space is originated. A Galerkin's technique is applied to resolve the fundamental expressions for distinct boundary conditions. Influence of distinct factors which can be in-plane loading, length scale parameter, load factor, elastic foundation, boundary conditions, and nonlocal parameter on vibration properties of the graphene sheets then undergo investigation.

유한요소해석을 이용한 마그네슘 합금 판재 성형한계도의 실용적 작성 방법 (Practical Method for FLD of Mg Alloy Sheet using FEM)

  • 김경태;이형욱;김세호;송정한;이근안;최석우;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.183-185
    • /
    • 2008
  • Forming Limit Diagram(FLD) is a representative tool for evaluating formability of sheet metals. This paper presents a methodology to determine the FLD using Finite Element Method. For predicting the forming limits numerically. Previous methods such as using the thickness strain or the ductile fracture criterion are limited at plane strain domain. These results suggest that behavior of the void growth in sheet metals is different from real one. In contrast to previous methods, a more exact model which takes void growth into account is used. This result agrees with the experimental result qualitatively.

  • PDF

박판시험편의 균열성장 시물레이션에 미치는 파괴기준 평가 (The Evaluation of the Fracture Criterion having an Effect on Crack Extension Simulation for a Thin Sheet)

  • 권오헌
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.15-19
    • /
    • 2000
  • The exact estimation of the ductile crack growth in a thin sheet would be needed in part of the commercial transport aircraft industry fields. A 2-dimensional elastic plastic finite element analysis was carried out to simulate a stable crack extension in a thin sheet 2024 aluminium alloy. Two kinds of crack modeling were used to evaluate curves of the stable crack extension. And then CTOA(crack tip opening angle) and CTED(crack tip energy density) were calculated in order to determine whether they can be used as useful crack extension criterions in a thin sheet. Results indicate that stable crack extension behaviors were simulated well and CTED is more admirable even though CTOA also is reasonable as a criterion for a stable crack extension in a thin 2024 aluminium alloy sheet.

  • PDF

금속판재(金屬板材)의 스프링백 특성(特性)에 관한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Springback Characteristics of Sheet Metals)

  • 박정완;김형종
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.217-223
    • /
    • 1998
  • The springback characteristics of some sheet metals such as commercially pure aluminium, mild steel and stainless steel in a forming process are investigated experimentally. Three geometrical parameters for evaluating springback in the plane-strain draw-bending, which was a benchmark model of NUMISHEET '93 conference, are defined. The measurement of the springback parameters is carried out accurately and easily by using an image analysis system developed in this study. The effects of the blank holding pressure and tensile strength of the material on the springback are also examined.

  • PDF