• Title/Summary/Keyword: Plane Projection

Search Result 207, Processing Time 0.031 seconds

Estimation of Real Boundary with Subpixel Accuracy in Digital Imagery (디지털 영상에서 부화소 정밀도의 실제 경계 추정)

  • Kim, Tae-Hyeon;Moon, Young-Shik;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.16-22
    • /
    • 1999
  • In this paper, an efficient algorithm for estimating real edge locations to subpixel values is described. Digital images are acquired by projection into image plane and sampling process. However, most of real edge locations are lost in this process, which causes low measurement accuracy. For accurate measurement, we propose an algorithm which estimates the real boundary between two adjacent pixels in digital imagery, with subpixel accuracy. We first define 1D edge operator based on the moment invariant. To extend it to 2D data, the edge orientation of each pixel is estimated by the LSE(Least Squares Error)line/circle fitting of a set of pixels around edge boundary. Then, using the pixels along the line perpendicular to the estimated edge orientation the real boundary is calculated with subpixel accuracy. Experimental results using real images show that the proposed method is robust in local noise, while maintaining low measurement error.

  • PDF

A study on the phase calibration of the phase measuring profilometry (PMP 형상 측정법의 위상보정에 관한 연구)

  • 이연태;강영준;황용선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.421-424
    • /
    • 2002
  • The 3-D measurement using a sinusoidal grating pattern projection is very attractive because of its high measuring speed and high sensitivity. When a sinusoidal amplitude grating was projected on an object, the surface-height distribution of the object is translated into a phase distribution of the deformed grating image. The phase-acquisition algorithms are so sufficiently simple that high-resolution phase maps using a CCD camera can be generated in a short time. The PMP technique is discussed, and the analysis of the systematic errors, the calibration procedure designed to determined the optimal setting of the measurement parameters is illustrated. Results of measurements and calibrations on the measurement plane objects are described.

  • PDF

A Novel Image Completion Algorithm Based on Planar Features

  • Xiao, Mang;Liu, Yunxiang;Xie, Li;Chen, Qiaochuan;Li, Guangyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3842-3855
    • /
    • 2018
  • A novel image completion method is proposed that uses the advantage of planar structural information to fill corrupted portions of an image. First, in estimating parameters of the projection plane, the image is divided into several planes, and their planar structural information is analyzed. Second, in calculating the a priori probability of patch and patch offset regularity, this information is converted into a constraint condition to guide the process of filling the hole. Experimental results show that the proposed algorithm is fast and effective, and ensures the structure continuity of the damaged region and smoothness of the texture.

NOTE ON THE OPERATOR ${\hat{P}}$ ON Lp(∂D)

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.269-278
    • /
    • 2008
  • Let ${\partial}D$ be the boundary of the open unit disk D in the complex plane and $L^p({\partial}D)$ the class of all complex, Lebesgue measurable function f for which $\{\frac{1}{2\pi}{\int}_{-\pi}^{\pi}{\mid}f(\theta){\mid}^pd\theta\}^{1/p}<{\infty}$. Let P be the orthogonal projection from $L^p({\partial}D)$ onto ${\cap}_{n<0}$ ker $a_n$. For $f{\in}L^1({\partial}D)$, ${\hat{f}}(z)=\frac{1}{2\pi}{\int}_{-\pi}^{\pi}P_r(t-\theta)f(\theta)d{\theta}$ is the harmonic extension of f. Let ${\hat{P}}$ be the composition of P with the harmonic extension. In this paper, we will show that if $1, then ${\hat{P}}:L^p({\partial}D){\rightarrow}H^p(D)$ is bounded. In particular, we will show that ${\hat{P}}$ is unbounded on $L^{\infty}({\partial}D)$.

  • PDF

A Segmentation Method for a Moving Object on A Static Complex Background Scene. (복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구)

  • Park, Sang-Min;Kwon, Hui-Ung;Kim, Dong-Sung;Jeong, Kyu-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF

Morpho-Histogenesis of Fruit Sculpture and Dehiscence in Thespesia populnea(L.) Soland (Malvaceae)

  • Rao T.V. Ramana;Yash Dave;J.A. Inamdar
    • Journal of Plant Biology
    • /
    • v.30 no.3
    • /
    • pp.189-199
    • /
    • 1987
  • Morpho-histogenesis of fruit sculpture and dehiscence in Thespesia populnea is described. The fruit wall is differentiated into epicarp, mesocarp and endocarp. The epicarp is stony, rind-like, 30 to 35 layers thick and derived from outer epidermis, sub-epidermis and ground parenchyma of the ovary wall. The spherical and/of tangentially elongated, thick walled cells of epicarp are interspersed with radial bands of sclereids. The mesocarp is a product of the inner zone of ground parenchyma. At maturity 20 to 25 layers of thin walled parenchyma of mesocarp appear sinuous of disorgnized. The innermost 1 to 3 layers of ground parenchyma and sub-epidermis and inner epidermis form 35 to 40 layers thick endocarp. Due to the differentiation of fibrous tissue in the projection of median plane of carpel wall and a complete ring of fibrous zone in the endocarp, the dry capsule of Thespesia populnea dehises partially in loculicidal fashion.

  • PDF

Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock (횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • This study suggests three spatial distribution functions of strength parameters, which can be adopted in the derivation of failure conditions for transversely isotropic rocks. All three proposed functions, which are the oblate spheroidal function, the exponential function, and the function based on the directional projection of the strength parameter tensor, consist of two model parameters. With assumption that the cohesion and friction angle can be described by the proposed distribution functions, the transversely isotropic Mohr-Coulomb criterion is formulated and used as a failure condition in the simulation of the conventional triaxial tests. The simulation results confirm that the failure criteria incorporating the proposed distribution functions could reproduce the general trend in the variations of the axial stress at failure and the directions of failure planes with varying inclination of the weankness planes and confining pressure. Among three distribution functions, the function based on the directional projection of the strength parameter tensor yields the highest axial strength, while the axial strength estimated by the oblate spheroidal distribution function is the lowest.

A Study for the Optimum Joint Set Orientations and Its Application to Slope Analysis (사면해석을 위한 최적의 절리군 대표방향성 도출 및 활용기법 연구)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.343-357
    • /
    • 2018
  • Algorithm which can analyze the slope failure behavior utilizing the comprehensive information of the dense point of joint poles and the joint set orientations, both of which are obtained statistically, and the defect pattern of pole distribution has been developed. This method overcomes the potential incorrectness of the hemispheric projection method utilizing the joint set orientations only and also enhances the reliability of slope failure analysis. To this end a method capable of calculating the joint dispersion index directly from the joint pole distribution, instead of contour map, has been devised. The representative orientations for the slope failure analysis has been determined by considering the number and orientations of cone angle-dependent joint sets as well as the joint dispersion index. By engaging these representative orientations to the hemispheric projection analysis more reliable slope failure examination has been carried out. Sensitivity analysis for the potentially unstable slope of plane failure mode has been performed. Significance of joint strength index and the external seismic loading on the slope stability has been fully analyzed.

Enhancement of Image Sharpness in X-ray Digital Tomosynthesis Using Self-Layer Subtraction Backprojection Method (관심 단층 제거 후 역투사법을 이용한 X-선 디지털 영상합성법에서의 단층영상 선명도 향상에 관한 연구)

  • Shon, Cheol-Soon;Cho, Min-Kook;Lim, Chang-Hwy;Cheong, Min-Ho;Kim, Ho-Kyung;Lee, Sung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • X-ray digital tomosynthesis is widely used in the nondestructive testing and evaluation, especially for the printed circuit boards (PCBs). In this study, we propose a simple method to reduce the blur artefact, frequently claimed in the conventional digital tomosynthesis based on SAA (shift-and-add) algorithm, and thus restore the image sharpness. The proposed method is basically based on the SAA, but has a correction procedure by finding blur artefacts from the forward-and back-projection for the firstly obtained, manipulated backprojection data. The manipulation is the replacement of the original data at the POI (plane-of-interest) by zeros. This method has been compared with the conventional SAA algorithm using the experimental measurements and Monte Carlo simulation for the designed PCB phantom. The comparison showed a much enhancement of sharpness in the images obtained from the proposed method.

Analysis of Geometrical Relations of 2D Affine-Projection Images and Its 3D Shape Reconstruction (정사투영된 2차원 영상과 복원된 3차원 형상의 기하학적 관계 분석)

  • Koh, Sung-Shik;Zin, Thi Thi;Hama, Hiromitsu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.