• Title/Summary/Keyword: Plane Frame

Search Result 342, Processing Time 0.027 seconds

A ROENTGENOCEPHALOMETRIC STUDY ON MAXILLOFACIAL MORPHOLOGY (악안면 형태에 관한 두부방사선계측학적 연구)

  • Kim, Hyun Soon;Nahm, Dong Seok
    • The korean journal of orthodontics
    • /
    • v.13 no.1
    • /
    • pp.45-62
    • /
    • 1983
  • To recognize the problems in malocclusion by roentgenocephalograms, the author designed a new pentagonal frame based on maxillary and mandibular bones. The subjects consisted of 44 normal occlusions (20 male and 24 female), 44 Class II division 1 malocclusions (15 male and 29 female) and 67 Class III malocclusions (31 male and 36 female). The results are as follows; 1. In normal group, the maxillary and mandibular skeletons of female we placed more closely to FH plane, so more anteriorly and upward than those of male. 2. In normal group, the posterior vertical height is longer in male than in female and the upper anterior teeth of female are in more labioversion than those of male. 3. By the X, Y coordinate values in pentagonal frame, it is helpful to recognize certain problems in malocclusions. 4. The posterior vertical height is a good indicator in detecting Angle's Class III malocclusion. 5. The maxillary and mandibular body length, the anterior point of maxillary and mandibular body length and the axial inclination of upper and lower anterior teeth can be useful in discerning Angle's Class II & Class III malocclusion.

  • PDF

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

The Uplift Capacity of Plane and Corrugated Piles for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝과 주름말뚝의 인발저항력)

  • Yong Cheol Yoon;Won Myung Suh;Jae Hong Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.148-154
    • /
    • 2001
  • The uplift capacity of a pile for improving the wind resistance of the 1-2 W type plastic film pipe on greenhouses was tested using the plane and corrugated piles with various shapes and diameters. First, the resistant uplift capacity was measured by using the uplift loading on plane piles. As the uplift loading on plane piles increased, the resistant uplift capacity also increased until the loading was reached to ultimate uplift capacity. After ultimate uplift capacity was appeared the uplift displacement, the uplift capacity was decreased gradually. Secondly, the resistant uplift capacity was measured by using the uplift loading on corrugated piles. After the uplift capacity was reached the uplift displacement, the uplift capacity was continually increased or decreased. In general, the ultimate uplift capacity was independent of pile shapes, pile diameter length, and embedded pipe depth. However, the ultimate uplift capacity of a corrugated pile was twice more than that of a plane pile without regard to its diameter and embedded depth. The ultimate uplift capacity per unit pile area was increasing in deeper embedded depth. However, the longer a pile diameter was, the less ultimate uplift capacity. The uplift capacity of a plane pile, used in conjunction with the design wind velocity (26.9m.s$^{-1}$ ) of the project area, was unsatisfiable without regard to diameters and embedded depths of piles, while most of corrugated piles were well appeared uplift capacity under various experimental conditions.

  • PDF

A Study on the Analysis of Aesthetic Shape Shown on the Modern Flat Patterned Clothing (현대 평면의에 나타난 형태미에 관한 연구)

  • Kwen, Jin
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.7 s.107
    • /
    • pp.115-125
    • /
    • 2006
  • The study on plane composition in clothing was focused mainly on woven wear earlier but its application has been reaching the knit wear. This study is confined to the utilization with geometrical linear pattern in the modern apparel. The work here intends to grasp the plane structure found in both woven wear and knit wear and, in particular, to understand the aesthetics of fashion. The modern flat patterned clothing has been affected by the oriental style or postmodernism in view of social and cultural aspect while its fabric material and expression method shows the diversity in terms of industrial and technical aspect. It can be characterized as several outstanding patterns: the geometrical pattern in structure, the linear pattern with seam line and 2-dimensional plane pattern without seam line, and the flexible silhouette integrated into one single shape with human body unlike the traditional apparel The aesthetics of fashion in modern flat patterned clothing can be divided into such category as the organically spatial change, the re-creation of tradition and the non-format framework. The organically spatial change shows the geometrical formation in clothes due to change in dimension, where the organically changing uniformity and generosity appears as the dimension progresses. The timeless without any difference of up and down, left and right, and inside and outside and the discontinuity due to limitless spatial change are also imbedded. The re-creation of tradition tells the reshaped spirits of old tradition by integrating and modifying the hereditary features in the old customed clothing into modern clothing. The modern flat patterned clothing implies the contemporaneousness or the frame through which the old and modern cultures may be shared and indicates the re-creation of the past and uniformity. The non-format framework contains the uncertainty in meaning and it doesn't have any certain standards. As both the apparel and the human body with this style aim at the open space, the numerous contingencies are realized.

A Study on the Development of Force Limiting Devices(FLD) which Induce Yielding before Elastic Buckling (좌굴전 항복유도 장치(FLD) 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak;Oh, Young Suk;Kim, Chae Yeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.279-287
    • /
    • 2013
  • The steel members are applied to high rise building since they have high strength compare to the concrete member. On the other hand, the elastic buckling is likely to occur in steel member because of their small section. When the elastic buckling occur, the steel structure lose a load carrying capacity. The steel frame would be unstable due to a rapid decline in strength by buckling. The purpose of this study is the development of FLD(Force Limiting Device) to prevent a elastic buckling for a slender member. Further, the behavior of steel structures with FLD would be stable by high energy absorption capacity. The proposed type of FLD is the type of out-of-plane resistance. In this study, member test and FEM analysis for proposed type were performed. The test parameters are thickness and gradient angle of out-of-plane plate. The proposed type may be effective method for FLD.

An Improved Stability Design of Plane Frames using System Buckling and Second-order Elastic Analysis (탄성좌굴 고유치 및 2차 탄성해석법을 이용한 평면강절프레임의 개선된 좌굴설계법)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Nam-Il;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.159-168
    • /
    • 2005
  • An improved stability design method for beam-columns of plane frames is proposed based on system buckling analysis and second-order elastic analysis. For this, the tangent stiffness matrix of beam-column elements is first derived using stability functions and a procedure for evaluating effective buckling lengths is reviewed using elastic system buckling analysis. And then the second-order analysis procedure is presented considering $P-\Delta$ effects and is compared with the closed-form solution through numerical examples. Design examples showing the validity of the proposed method we presented and their numerical results are compared with those obtained from the conventional stability design methods. Finally some useful conclusions are drawn.

A comparison of three performance-based seismic design methods for plane steel braced frames

  • Kalapodis, Nicos A.;Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.27-44
    • /
    • 2020
  • This work presents a comparison of three performance-based seismic design methods (PBSD) as applied to plane steel frames having eccentric braces (EBFs) and buckling restrained braces (BRBFs). The first method uses equivalent modal damping ratios (ξk), referring to an equivalent multi-degree-of-freedom (MDOF) linear system, which retains the mass, the elastic stiffness and responds in the same way as the original non-linear MDOF system. The second method employs modal strength reduction factors (${\bar{q}}_k$) resulting from the corresponding modal damping ratios. Contrary to the behavior factors of code based design methods, both ξk and ${\bar{q}}_k$ account for the first few modes of significance and incorporate target deformation metrics like inter-storey drift ratio (IDR) and local ductility as well as structural characteristics like structural natural period, and soil types. Explicit empirical expressions of ξk and ${\bar{q}}_k$, recently presented by the present authors elsewhere, are also provided here for reasons of completeness and easy reference. The third method, developed here by the authors, is based on a hybrid force/displacement (HFD) seismic design scheme, since it combines the force-base design (FBD) method with the displacement-based design (DBD) method. According to this method, seismic design is accomplished by using a behavior factor (qh), empirically expressed in terms of the global ductility of the frame, which takes into account both non-structural and structural deformation metrics. These expressions for qh are obtained through extensive parametric studies involving non-linear dynamic analysis (NLDA) of 98 frames, subjected to 100 far-fault ground motions that correspond to four soil types of Eurocode 8. Furthermore, these factors can be used in conjunction with an elastic acceleration design spectrum for seismic design purposes. Finally, a comparison among the above three seismic design methods and the Eurocode 8 method is conducted with the aid of non-linear dynamic analyses via representative numerical examples, involving plane steel EBFs and BRBFs.

Evaluation of Steel Plate Reinforced Concrete Panels under In-plane Shear (SC구조 평판의 면내전단내력 평가)

  • Lee, Myung Jae;Lee, Hyun Wook;Jin, Seong Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.571-581
    • /
    • 2008
  • The steel plate reinforced concrete structure(SC structure) is suggested for the reasons of the saving of construction period, the saving of manpower and the advantage of quality control. The objective of this study is to evaluate basic structural behavior of SC structure under pure shear load, and shear with axial load condition and to suggest the method of in-plane pure shear loading. From the test results, structural behaviors of SC structure under pure shear load and shear with axial load were investigated the combination of validity of pure shear loading method by using 4 hinge frames was verified.

Fiber orientation distribution of reinforced cemented Toyoura sand

  • Safdar, Muhammad;Newson, Tim;Waseem, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • In this study, the fiber orientation distribution (FOD) is investigated using both micro-CT (computerized tomography) and image analysis of physically cut specimens prepared from Polyvinyl Alcohol (PVA) fiber reinforced cemented Toyoura sand. The micro-CT images of the fiber reinforced cemented sand specimens were visualized in horizontal and vertical sections. Scans were obtained using a frame rate of two frames and an exposure time of 500 milliseconds. The number of images was set to optimize and typically resulted in approximately 3000 images. Then, the angles of the fibers for horizontal sections and in vertical section were calculated using the VGStudio MAX software. The number of fibers intersecting horizontal and vertical sections are counted using these images. A similar approach was used for physically cut specimens. The variation of results of fiber orientation between micro-CT scans and visual count were approximately 4-8%. The micro-CT scans were able to precisely investigate the fiber orientation distribution of fibers in these samples. The results show that 85-90% of the PVA fibers are oriented between ±30° of horizontal, and approximately 95% of fibers have an orientation that lies within ±45° of the horizontal plane. Finally, a comparison of experimental results with the generalized fiber orientation distribution function 𝜌(θ) is presented for isotropic and anisotropic distribution in fiber reinforced cemented Toyoura sand specimens. Experimentally, it can be seen that the average ratio of the number of fibers intersecting the finite area on a vertical plane to number of fibers intersecting the finite area on a horizontal plane (NVtot/NHtot) cut through a sample varies from 2.08 to 2.12 (an average ratio of 2.10 is obtained in this study). Based up on the analytical predictions, it can be seen that the average NVtot/NHtot ratio varies from 2.13 to 2.17 for varying n values (an average ratio of 2.15).

Detection of the co-planar feature points in the three dimensional space (3차원 공간에서 동일 평면 상에 존재하는 특징점 검출 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.499-508
    • /
    • 2023
  • In this paper, we propose a technique to estimate the coordinates of feature points existing on a 2D planar object in the three dimensional space. The proposed method detects multiple 3D features from the image, and excludes those which are not located on the plane. The proposed technique estimates the planar homography between the planar object in the 3D space and the camera image plane, and computes back-projection error of each feature point on the planar object. Then any feature points which have large error is considered as off-plane points and are excluded from the feature estimation phase. The proposed method is archived on the basis of the planar homography without any additional sensors or optimization algorithms. In the expretiments, it was confirmed that the speed of the proposed method is more than 40 frames per second. In addition, compared to the RGB-D camera, there was no significant difference in processing speed, and it was verified that the frame rate was unaffected even in the situation that the number of detected feature points continuously increased.