• Title/Summary/Keyword: Planck Number

Search Result 21, Processing Time 0.029 seconds

SIZE AND ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE COMPARATIVE STUDY OF INFRARED ASTEROID SURVEYS: IRAS, AKARI, AND WISE

  • Usui, Fumihiko;Hasegawa, Sunao;Ishiguro, Masateru;Muller, Thomas G.;Ootsubo, Takafumi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.55-57
    • /
    • 2017
  • Presently, the number of known asteroids is more than 710,000. Knowledge of size and albedo is essential in many aspects of asteroid research, such as the chemical composition and mineralogy, the size-frequency distribution of dynamical families, and the relationship between small bodies in the outer solar system or comets. Recently, based on the infrared all-sky survey data obtained by IRAS, AKARI, and WISE, the large asteroid catalogs containing size and albedo data have been constructed. In this paper, we discuss the compositional distribution in the main belt regions based on the compiled data on size, albedo, and separately obtained taxonomic type information.

Two-Dimensional Laminar Natural Convection Heat Transfer with Surface Radiation in a Cavity (캐비티내에서 표면복사를 고려한 2차원 층류 자연대류 열전달)

  • Park, H.Y.;Park, K.W.;Han, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.217-232
    • /
    • 1992
  • A Numerical study on two-dimensional laminar natural convection with and without surface radiation in fully or partially open square cavity was performed. The cavity has one vertical heated wall facing a vertical opening and two horizontal insulated walls. The pressure boundary condition was applied to the opening instead of the velocity boundary condition. The results of this study showed that the increase of partition length decreased the convective and the radiative Nusselt numbers. It was also found that the increase of wall emissivity decreased the convective Nusselt numbers but increased the radiative Nusselt numbers.

  • PDF

Measurement and Interpretation of Undergraduate Students' Writing about the Experiments of the Photoelectric Effect

  • Jho, Hunkoog;Ji, Youngrae
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1231-1239
    • /
    • 2018
  • This study aimed at examining undergraduate students' writing about experiments related to the photoelectric effect and giving some implications for experiment education. Thus, this study analyzed 26 students' reports about three kinds of experiments: measuring Planck's constant, comparing the photocurrent and the photovoltage across the intensity of light, and comparing the photocurrent and the photovoltage across the frequency of light. In the measurements, less than 25% of the students expressed the data to the correct number of significant figures even though two-thirds of the students successfully obtained the data given in the manual. In terms of interpretation, the students were not aware of the physical meanings of the detailed parts in the graphs. Even though over 50% of the students drew a line relating photocurrent to voltage, no students compared the theoretical to the empirical data or made a judgment as to whether of not the background theory really fit the experiment. The research findings showed that insufficient knowledge and skills for physics inquiry may be an obstacle in performing the experiments well.

Testing LCDM with eBOSS / SDSS

  • Keeley, Ryan E.;Shafieloo, Arman;Zhao, Gong-bo;Koo, Hanwool
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.3-47.3
    • /
    • 2021
  • In this talk I will review recent progress that the SDSS-IV / eBOSS collaboration has made in constraining cosmology from the clustering of galaxies, quasars and the Lyman-alpha forest. The SDSS-IV / eBOSS collaboration has measured the baryon acoustic oscillation (BAO) and redshift space distortion (RSD) features in the correlation function in redshift bins from z~0.15 to z~2.33. These features constitute measurements of angular diameter distances, Hubble distances, and growth rate measurements. A number of consistency tests have been performed between the BAO and RSD datasets and additional cosmological datasets such as the Planck cosmic microwave background constraints, the Pantheon Type Ia supernova compilation, and the weak lensing results from the Dark Energy Survey. Taken together, these joint constraints all point to a broad consistency with the standard model of cosmology LCDM + GR, though they remain in tension with local measurements of the Hubble parameter.

  • PDF

Constraints on dark radiation from cosmological probes

  • Rossi, Graziano;Yeche, Christophe;Palanque-Delabrouille, Nathalie;Lesgourgues, Julien
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2015
  • We present joint constraints on the number of effective neutrino species $N_{eff}$ and the sum of neutrino masses ${\Sigma}m_{\nu}$, based on a technique which exploits the full information contained in the one-dimensional Lyman-${\alpha}$ forest flux power spectrum, complemented by additional cosmological probes. In particular, we obtain $N_{eff}=2.91{\pm}0.22$ (95% CL) and ${\Sigma}m_{\nu}$ < 0.15 eV (95% CL) when we combine BOSS Lyman-${\alpha}$ forest data with CMB (Planck+ACT+SPT+WMAP polarization) measurements, and $N_{eff}=2.88{\pm}0.20$ (95% CL) and ${Sigma}m_{\nu}$ < 0.14 eV (95% CL) when we further add baryon acoustic oscillations. Our results tend to favor the normal hierarchy scenario for the masses of the active neutrino species, provide strong evidence for the Cosmic Neutrino Background from $N_{eff}{\approx}3$($N_{eff}=0$ is rejected at more than $14{\sigma}$), and rule out the possibility of a sterile neutrino thermalized with active neutrinos (i.e., $N_{eff}=4$) - or more generally any decoupled relativistic relic with $${\Delta}N_{eff}{\sim_=}1$$ - at a significance of over $5{\sigma}$, the strongest bound to date, implying that there is no need for exotic neutrino physics in the concordance ${\Lambda}CDM$ model.

  • PDF

Measurement of temperature profile in molter metal using a cod camera (ccd 카메라를 이용한 금속 용융면의 온도분포측정)

  • 노시표;정의창;임창환;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • Using a high fewer electron beam gun (max. power 20 kW), Gadolinium (Gd, atomic number 64) metal was melted and the temperature distribution of melted surface was measured. With proper optical filters and the adjustment of aperture of lens, the radiation of melted surface was received by a ccd camera and its signal transferred to a computer. The real time monitoring of melted surface with a variation of electron beam Power was Possible and stable operation of electron beam was achieved. It was found that the max. temperature measured by a ccd camera with an assumption of blackbody radiation of melted Gd surface and adaption of Planet's law was above 100~$200^{\circ}C$ compared to that measured by a pyrometer in the same e-beam power.

RIGOROUS "RICH ARGUMENT" IN MICROLENSING PARALLAX

  • Gould, Andrew
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.5
    • /
    • pp.99-102
    • /
    • 2020
  • I show that when the observables (πE, tE, θE, πs, µs) are well measured up to a discrete degeneracy in the microlensing parallax vector πE, the relative likelihood of the different solutions can be written in closed form Pi = KHiBi, where Hi is the number of stars (potential lenses) having the mass and kinematics of the inferred parameters of solution i and Bi is an additional factor that is formally derived from the Jacobian of the transformation from Galactic to microlensing parameters. Here tE is the Einstein timescale, θE is the angular Einstein radius, and (πs, µs) are the (parallax, proper motion) of the microlensed source. The Jacobian term Bi constitutes an explicit evaluation of the "Rich Argument", i.e., that there is an extra geometric factor disfavoring large-parallax solutions in addition to the reduced frequency of lenses given by Hi. I also discuss how this analytic expression degrades in the presence of finite errors in the measured observables.

LOCAL ANOMALIES AROUND THE THIRD PEAK IN THE CMB ANGULAR POWER SPECTRUM OF WMAP 7-YEAR DATA

  • Ko, Kyeong Yeon;Park, Chan-Gyung;Hwang, Jai-Chan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75-91
    • /
    • 2013
  • We estimate the power spectra of the cosmic microwave background radiation (CMB) temperature anisotropy in localized regions of the sky using the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data. We find that the north and south hat regions at high Galactic latitude ($|b|{\geq}30^{\circ}C$) show an anomaly in the power spectrum amplitude around the third peak, which is statistically significant up to 3. We try to explain the cause of the observed anomaly by analyzing the low Galactic latitude ($|b|$ < $30^{\circ}C$) regions where the galaxy contamination is expected to be stronger, and the regions weakly or strongly dominated byWMAP instrument noise. We also consider the possible effect of unresolved radio point sources. We find another but less statistically significant anomaly in the low Galactic latitude north and south regions whose behavior is opposite to the one at high latitude. Our analysis shows that the observed north-south anomaly at high latitude becomes weaker on regions with high number of observations (weak instrument noise), suggesting that the anomaly is significant at sky regions that are dominated by the WMAP instrument noise. We have checked that the observed north-south anomaly has weak dependences on the bin-width used in the power spectrum estimation, and on the Galactic latitude cut. We also discuss the possibility that the detected anomaly may hinge on the particular choice of the multipole bin around the third peak. We anticipate that the issue of whether or not the anomaly is intrinsic one or due to WMAP instrument noise will be resolved by the forthcoming Planck data.

RETRIEVAL OF LOCAL INTERPLANETARY DUST EMISSIVITY BY ASTRO-F

  • HONG S. S.;KWON S. M.;PYO J.;UENO M.;ISHIGURO M.;USUI F.;WEINBERG J. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.159-169
    • /
    • 2004
  • This is a proposal to probe local part of the interplanetary dust (IPD) cloud complex and retrieve mean volume emissivity of the local IPDs at mid-infrared wavelengths. This will be done by monitoring, with Infrared Camera (IRC) aboard the ASTRO-F, the annual modulation of the zodiacal emission. In pointing mode of the ASTRO-F mission the spacecraft can make attitude maneuvering over approximately ${\pm}1^{\circ}$ range centered at solar elongation $90^{\circ}$ in the ecliptic plane. The attitude maneuvering combined with high sensitivity of the IRC will provide us with a unique opportunity observationally to take derivatives of the zodiacal emission brightness with respect to the solar elongation. From the resulting differential of the brightness over the ${\pm}1^{\circ}$ range, one can directly determine the mean volume emissivity of the local IPDs with a sufficient accuracy to de-modulate the annual emissivity variations due to the Earth's elliptical motion and the dis-alignment of the maximum IPD density plane with respect to the ecliptic. The non-zero eccentricity ($e_{\oplus}$= 0.0167) of the Earth's orbit combined with the sensitive temperature dependence of the Planck function would bring modulations of amplitude at least $3.34\%$ to the zodiacal emission brightness at mid-infrared wavelengths, with which one may determine the IPD temperature T(r) and mean number density n(r) as functions of heliocentric distance r. This will in turn fix the power-law exponent $\delta$ in the relation $T(r) = T_o(r/r_o)^{-\delta}$ for the dust temperature and v in $n(r) = n_o(r/r_o)^-v$ for the density. We discuss how one may de-couple the notorious degeneracy of cross-section, density, reference temperature $T_o$ and exponent $\delta$.

VOIDS LENSING OF THE CMB AT HIGH RESOLUTION

  • SANGKA, ANUT;SAWANGWIT, UTANE;SANGUANSAK, NUANWAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.397-399
    • /
    • 2015
  • Recently, cosmic voids have been recognized as a powerful cosmological probe. A number of studies have focused on the effects of the gravitational lensing by voids on the temperature (and in some cases polarization) anisotropy of the Cosmic Microwave Background (CMB) background at relatively large to medium scales, l ~ 1000. Many of these studies attempt to explain the unusually large cold spot in CMB temperature maps and dynamical evidence of dark energy via detections of late-time integrated Sachs Wolfe (ISW) effect. Here, the effects of lensing by voids on the CMB temperature anisotropy at small scales, up to l = 3000, will be investigated. This work is carried out in the light of the benefits of adding large catalogues of cosmic voids, to be identified by future large galaxy surveys such as EUCLID and LSST, to the analysis of CMB data such as those from Planck mission. Our numerical simulation utilizes two methods, namely, the small-de ectionangle approximation and full ray-tracing analysis. Using the fitted void density profiles and radius (RV ) distribution available in the literature from N-body simulations, we simulated the secondary temperature anisotropy (lensing) of CMB photons induced by voids along a line of sight from redshift 0 to 2. Each line of sight contains approximately 1000 voids of effective radius $RV_{,eff}=35h^{-1}Mpc$ with randomly distributed radial and projected positions. Both methods are used to generate temperature maps. The two methods will be compared for their accuracy and effciency in the implementation of theoretical modeling.