Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1231

Measurement and Interpretation of Undergraduate Students' Writing about the Experiments of the Photoelectric Effect  

Jho, Hunkoog (Department of General Education, Dankook University)
Ji, Youngrae (Department of General Education, Dankook University)
Abstract
This study aimed at examining undergraduate students' writing about experiments related to the photoelectric effect and giving some implications for experiment education. Thus, this study analyzed 26 students' reports about three kinds of experiments: measuring Planck's constant, comparing the photocurrent and the photovoltage across the intensity of light, and comparing the photocurrent and the photovoltage across the frequency of light. In the measurements, less than 25% of the students expressed the data to the correct number of significant figures even though two-thirds of the students successfully obtained the data given in the manual. In terms of interpretation, the students were not aware of the physical meanings of the detailed parts in the graphs. Even though over 50% of the students drew a line relating photocurrent to voltage, no students compared the theoretical to the empirical data or made a judgment as to whether of not the background theory really fit the experiment. The research findings showed that insufficient knowledge and skills for physics inquiry may be an obstacle in performing the experiments well.
Keywords
Photoelectric effect; Scientific inquiry; Experiment report; Physics experiment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. K. Kim, H. G. Oh and J. Park, J. Korean Assoc. Res. Sci. Educ. 16, 51 (1996).
2 Y. Y. Cheong and J. Song, New Phys.: Sae Mulli 61, 479 (2011).   DOI
3 H. J. Ha, S. H. Sohn and J. S. Kim, New Phys.: Sae Mulli 65, 602 (2015).   DOI
4 L. Changshi and L. W. Li, Optik 127, 7359 (2016).   DOI
5 H. Jho, New Phys.: Sae Mulli 68, 869 (2018).   DOI
6 Ministry of Education, National science curriculum, Report No. 2015-74, 2015.
7 H. Jho, J. Res. Curr. Instr. 22, 208 (2018).
8 A. Einstein, Ann. Phys. 322, 132 (1905).   DOI
9 M. K. E. L. Planck, Verhandlungen Dtsch. Physik. Ges. 2, 202 (1900).
10 M. K. E. L. Planck, Verhandlungen Dtsch. Physik. Ges. 2, 237 (1900)
11 R. A. Powell, Am. J. Phys. 46, 1046 (1978).   DOI
12 J. G. Cramer, The Quantum Handshake: Entanglement, Nonlocality, and Transactions (Springer, New York, 2015).
13 G. McClellan, E. M. Didwall and C. J. Rigby, Am. J. Phys. 46, 832 (1978).   DOI
14 A. K. Knudsen, Am. J. Phys. 51, 725 (1983).   DOI
15 G. D. Earle, B. L. Copp, J. H. Klenzig and R. L. Bishop, Am. J. Phys. 71, 766 (2003).   DOI
16 J. D. Barnett and H. T. Stokes, Am. J. Phys. 56, 86 (1988).   DOI
17 M. A. Asikainen and P. E. Hirvonen, Am. J. Phys. 77, 658 (2009).   DOI
18 M. Jammer, The Conceptual Development of Quantum Mechanics (Tomash Publishers, Los Angeles, 1989).
19 R. Gomatam, Philos. Sci. 74, 736 (2007).   DOI
20 J. Rudnick and D. S. Tannhauser, Am. J. Phys. 44, 796 (1976).   DOI
21 R. Zangara and E. Lanzara, Am. J. Phys. 61, 1114 (1993).   DOI
22 L. van Rens, A. Pilot and J. van der Schee, J. Res. Sci. Teach. 47, 788 (2010).   DOI
23 L. B. Flick and N. G. Lederman, Scientific Inquiry and Nature of Science: Implications for Teaching, Learning, and Teacher Education (Springer, Dordrecht, 2006).