• Title/Summary/Keyword: Planar inverted-F antenna

Search Result 68, Processing Time 0.024 seconds

Design of Headset MIMO Antenna for On-Body Application (인체부착형 Headset MIMO 안테나 설계)

  • Kim, Sung-Jin;Kim, Dong-Ho;Kwon, Kyeol;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1107-1115
    • /
    • 2011
  • In this paper, a headset multiple-input multiple-output(MIMO) antenna for on-body application is proposed and the antenna performance with body effect and the impact on human body are investigated. The proposed MIMO antenna is composed of two planar inverted-F antennas(PIFA) above ground plane and an isolator located between the two antennas enhance the isolation characteristic. Simulation was carried to analyze the effect of human body on antenna performance when a human body is located in the near field of the antenna. According to the measurement result, the diversity performance of the proposed antenna can be considered good since ECC(Envelope Correlation Coefficient), which commonly indicates the performance of a MIMO antenna, remains below 0.1 over the ISM band. The measured SAR values for antennas 1 and 2 are 0.575 W/kg and 0.571 W/kg, respectively when 250 mW input power in engaged. These values satisfy the FCC guideline which states that the 1-g average SAR should be lower than 1.6 W/kg.

A High Isolation 4 by 4 MIMO Antenna for LTE Mobile Phones using Coupling Elements

  • Lee, Won-Woo;Yang, Hyung-kyu;Jang, Beakcheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5745-5758
    • /
    • 2017
  • In this paper, we develop a simple but very effective 4 by 4 Multiple-Input Multiple-Output (MIMO) antenna system for mobile phones consisting of different types of antennas to achieve low correlation property at the frequency ranges of 1710 to 2170 MHz, which covers wide LTE service bands, from band 1 to band 4. The proposed antenna system consists of two pair of antennas. Each pair consists of a planar inverted-F antenna (PIFA) and a coupling antenna which has the property of the loop. The use of two different antenna types of IFA and a coupling achieves high isolation. Proposed antenna system occupies relatively small area and positions at the four corners of a printed circuit board. The gap between the two antennas is 4 mm, in order to realize the good isolation performance. To evaluate the performance of our proposed antenna system, we perform various experiments. The proposed antenna shows a wide operating bandwidth greater than 460 MHz with isolation between the feeding ports higher than 17.5-dB. It also shows that the proposed antenna has low Envelop Correlation Coefficient (ECC) values smaller than 0.08 over the all desired frequency tuning ranges.

Miniaturization of Dual-Band PIFA for Wireless LAN Communication

  • Liu, Yang;Lee, Jaeseok;Jeon, Sinhyung;Jung, Kyung-Young;Kim, Hyunghoon;Kim, Hyeongdong
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.530-533
    • /
    • 2013
  • In this letter, a simple method for reducing the size of a dual-band planar inverted-F antenna (PIFA) is described. This method is based on a coupling capacitor connected in parallel to the PIFA feed conductor. The proposed antenna occupies a small ground clearance of $10mm{\times}5mm$ and is able to provide -10-dB impedance bandwidths of 120 MHz and 760 MHz for 2.45-GHz and 5.5-GHz wireless local area network applications, respectively. The measured antenna efficiencies are 71.8% and 73.6%, averaged over the 2.45-GHz and 5.5-GHz frequency bands, respectively.

Design of PIFA with Stacked U-shape Parasitic Patch for GPS/IMT-2000/Bluetooth Application. (U자형 적층 기생패치를 갖는 GPS/IMT-2000/Bluetooth용 PIFA 설계)

  • Shin Kyung-Sup;Kim Yong-Do;Won Chung-Ho;Lee Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.197-200
    • /
    • 2004
  • In this paper, a novel triple-band planar inverted F antenna(PIFA) is proposed. The goal of this paper is to design a small antenna which is operated in triple band. Using T-shape slit and stacked U-shape parasitic patch, good impedance matching is achieved in three band. T-shape slit is inserted on the main patch in order to effectively control the excited patch surface current distributions. The proposed antenna occupies a small volume of $26{\times}9.5{\times}6mm^3$, and the obtained impedance bandwidths cover the required operating bandwidths of the GPS(1565-1585MHz), IMT-2000(1885-2200MHz) and Bluetooth (2400-2484MHz) bands.

  • PDF

An Integrated Evaporation Intenna used sputtering technology for Wireless Microsystems

  • Park, Book-Sung;Jung, In-Sung;Kwon, Sung-Hun;Lee, Seon-Gu;Lee, Jee-Myun;Son, Sung-Il;Kim, Eun-Tae;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.158-158
    • /
    • 2008
  • In general, a wireless communication device has employed a whip antenna or a stubby antenna. Recently, wireless communication device is increasingly employing an embedded antenna, Intenna, for the sake of miniaturization. Further, it may employ both external and embedded antennas. Examples of the embedded antenna include a multi-band monopole antenna, which radiates uniformly in all directions when viewed from above, and a planar inverted F antenna (PIFA), which is a variation of the monopole antenna. However, since the conventional antenna is mounted in a finished state on the mobile communication terminal, there is a limitation of space required for providing the antenna. According to the present study, there is provided an Intenna that is deposited on a front or back case of the mobile communication terminal by a sputtering method. Accordingly, it is possible to overcome a limitation of space required for providing the Intenna and to improve the performance of the Intenna formed on the front or back case of the mobile communication terminal.

  • PDF

Design of PIFA type Spiral Antenna for Vehicle RKE Reader (차량 RKE 리더기용 PIFA형 스파이럴 안테나의 설계)

  • Oh, Dong-Jun;Yun, Ho-Jin;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • In this paper, the spiral antenna with the center frequencies of 315MHz, 433MHz, and 447MHz for RKE system of a vehicle is designed on PCB. The antenna is microstrip line-fed, and applied PIFA concept near the feeding part to easily tune center frequency and input impedance. The PIFA-type spiral antenna with the size of $30mm{\times}20mm$ is designed on printed PCB by considering the effect of circuits and components on PCB, ECU case and vehicle body. Also chip inductor inserted dual-band spiral antenna of 315MHz and 447MHz is designed. We found that the antenna designed on PCB satisfied the antenna specifications through measurement and field test.

  • PDF

Development of an Optimal Design Program for a Triple-Band PIFA Using the Evolution Strategy (진화 알고리즘을 이용한 삼중 대역 PIFA 최적 설계 프로그램의 구현)

  • Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Dong-Hun;Kim, Hyeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.746-752
    • /
    • 2009
  • In this paper, we deal with the development of an optimal design program for a triple-band PTFA(Planar Inverted-F Antenna) of 433 MHz, 912 MHz and 2.45 GHz by using evolution strategy. Generally, the resonance frequency of the PIFA is determined by the width and length of a U-type slot used. However the resonance frequencies of the multiple U slots are varied by the mutual effect of the slots. Thus the optimal width and length of U-type slots are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The resonance frequencies of the triple-band PIFA yielded by the optimal design program are 430 MHz, 910.5 MHz and 2.458 GHz that show a good agreement to the design target values.

An Eight-Element Compact Low-Profile Planar MIMO Antenna Using LC Resonance with High Isolation

  • Kwon, DukSoo;Lee, Soo-Ji;Kim, Jin-Woo;Ahn, ByungKuon;Yu, Jong-Won;Lee, Wang-Sang
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.194-197
    • /
    • 2016
  • An eight-element compact low-profile multi-input multi-output (MIMO) antenna is proposed for wireless local area network (WLAN) mobile applications. The proposed antenna consists of eight inverted-F antennas with an isolation-enhanced structure. By inserting the isolation-enhanced structure between the antenna elements, the slot and capacitor pair generates additional resonant frequency and decreases mutual coupling between the antenna elements. The overall size of the proposed antenna is only $33mm{\times}33mm$, which is integrated into an area of just $0.5{\lambda}{\times}0.5{\lambda}$. The proposed antenna meets 5-GHz WLAN standards with an operation bandwidth of 4.86 - 5.27 GHz and achieves an isolation of approximately 30 dB at 5 GHz. The simulated and measured results for the proposed antenna are presented and compared.

Design of dual-band compact antenna with a deformed ground plane (변형된 접지구조를 갖는 이중대역 소형 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.815-820
    • /
    • 2007
  • In this paper, a small internal antenna for dual-band(RFID, PCS) applications is presented. The proposed antenna is a basic PIFA type and has a deformed ground plane under the main radiator. The modified ground plane is spreading the surface current and the antenna miniaturization can be achieved due to the coupling effect. The antenna is manufactured according to the simulation results and the resonance frequency move to low frequency band by 150MHz. And the surface current on the radiator and ground plane is evenly distributed so our suggested antenna can be used for better SAR and HAC performance.

  • PDF

Telematics Antenna for Vehicles (차량용 텔레매틱스 안테나)

  • 김해연;이병제;양성현
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.2
    • /
    • pp.331-336
    • /
    • 2004
  • In this paper, an antenna for telematics is proposed. It operates at GPS/GSM frequency-bands and it can be installed inside of a vehicle. There is a great difference between the proposed antenna and commonly used antennas. It needs not to use a dielectric with a high permittivity since it is formed on a sheet of FR4 with only 1mm thickness. Thus, it is possible to cut costs and make process of manufacture simple. Planar inverted-F antenna(PIFA) for GSM and microstrip antenna(MSA) for GPS is designed and PIFA-MSA antenna is proposed. The height is lower than that of commonly used antennas. And polarization of the PIFA and MSA is arranged perpendicularly for isolation improvement of each port, thus isolation of these two antennas is improved. Also, it is sufficient for the all specifications.

  • PDF