• Title/Summary/Keyword: Planar Substrate

Search Result 279, Processing Time 0.031 seconds

Design of Dual-Band Microstrip Antenna for Marine Telecommunication (해상 무선통신을 위한 이중대역 마이크로 스트립 안테나 설계)

  • Choi, Jo-Cheon;Lee, Gwang-Bok;Kim, Kab-Ki;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1314-1317
    • /
    • 2014
  • In this letter, we designed monopole microstrip antenna for WLAN / WiMAX system. The monopole antenna is designed by FR-4 substrate with size is $30mm{\times}40mm$. The proposed antenna is based on a planar monopole design which cover WLAN and WiMAX frequency bands. To obtainthe optimized parameters, we used the simulator, CST's Microwave Studio Program and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is designed. Thus the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

Pd/Ge-based Emitter Ohmic Contacts for AlGaAs/GaAs HBTs (AlGaAs/GaAs HBT 에미터 전극용 Pd/Ge계 오믹 접촉)

  • Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.465-472
    • /
    • 2003
  • Pd/Ge/Ti/Pt and Pd/Ge/Pd/Ti/Au ohmic contacts to n-type InGaAs were investigated for applications to AlGaAs/GaAs HBT emitter ohmic contacts. In the Pd/Ge/Ti/Pt ohmic contact minimum specific contact resistivity of $3.7${\times}$10^{-6}$ $\Omega$$\textrm{cm}^2$ was achieved by rapid thermal annealing at $^400{\circ}C$/10 sec. In the Pd/Ge/Ti/Au ohmic contact, minimum specific contact resistivity of $1.1${\times}$10^{-6}$ $\Omega$$\textrm{cm}^2$ was achieved by annealing at 40$0^{\circ}C$/10 sec but the ohmic performance was degraded with increasing annealing temperature due to the reaction between the ohmic contact materials and the InGaAs substrate. However, non-spiking planar interface and relatively good ohmic contact (high-$10^{-6}$ /$\Omega$$\textrm{cm}^2$) were maintained after annealing at $450^{\circ}C$/10 sec. Therefore, these thermally stable ohmic contact systems are promising candidates for compound semiconductor devices. RF performance of the AlGaAs/GaAs HBT was also examined by employing the Pd/Ge/Ti/Pt and Pd/Ge/Pd/Ti/Au systems as emitter ohmic contacts. Cutoff frequencies were 63.5 ㎓ and 65.0 ㎓, respectively, and maximum oscillation frequencies were 50.5 ㎓ and 51.3 ㎓, respectively, indicating very successful high frequency operations.

A Study on the Mode Characteristics of CSP-LOC Laser Diode for High Power (고출력 CSP-LOC 레이저 다이오드의 모우드 특성에 관한 연구)

  • Yoon, Seok-Beom;Oh, Hwan-Sool
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1367-1372
    • /
    • 1988
  • In this paper, we have optimized the computation of the CSP - LOC (Channel Substrate Planar-Large Optical Cavity) structure to design the gith power (Ga, Al) As/GaAs CSP-LOC laser diode. The parameters of the device on the bases of experimental datas include the effects of the various layer thickness, material absorption coefficients, stripe width and so forth. At active layer ($d_2$)=0.08 um with optical layer ($d_3$)=0.5 um and $d_2$ = 0.1 um with $d_3$ = 0.4 um, we find the narrower beam divergence and stable high power in the lowest-order mode without the phenomenon of spatial hole burning. The results of theoretical computation show good agreement with experimental measurements made on LPE grown CSP-LOC. Finally, we developed an practical program and the program is applicable to the CSP-LOC lasers with any materials.

  • PDF

Design and Implementation of CPW-Fed UWB Monopole Antenna (CPW 급전 방식을 이용한 UWB 모노폴 안테나 설계 및 구현)

  • Yu, Ju-Bong;Jeon, Jun-Ho;An, Chan-Kyu;Kim, Woo-Chan;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2010
  • In this paper, a novel CPW(Coplanar Waveguide)-fed UWB(Ultra Wide Band) antenna is designed, implemented, and measured for UWB communications. CPW-fed planar antenna has advantages of wide-bandwidth, low-cost and easy interaction with radio frequency front end circuitry. We have used HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for implementation. The proposed antenna showed VSWR(Voltage Standarding Wave Ratio)${\leq}2$ for the frequency band from 3.1 GHz to 10.6 GHz which is used for ultra wide band communication. Measured peak gains are 2.61, 4.95, 2.89, 7.35 dBi at 3, 6, 8, 11 GHz, respectively.

Inflatable Lifejacket-Integrated Flexible Multiband Antenna (팽창식 구명조끼 장착용 유연한 다중대역 안테나)

  • Lim, Ji-Hun;Yang, Gyu-Sik;Jung, Sung-Hun;Park, Dong-Kook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.455-462
    • /
    • 2015
  • In this paper, we suggested multiband antenna that can be equipped on a inflatable life-jacket, operating VHF-DSC band(156 MHz), COSPAS-SARSAT band(406 MHz) and GPS band(1,575 MHz) for search and rescue survivors quickly. The GPS band antenna was implemented with a square ring-slot planar antenna, and the COSPAS-SARSAT and VHF-DSC band antenna were implemented meander type dipole antennas. In order to place the antenna on a life-jacket, we installed it on 0.2 mm thickness FR-4 substrate to obtain a flexibility. It appeared that the antenna has -14.6 dB, -30.9 dB, and -18 dB return loss in COSPAS-SARSAT, GPS, and VHF-DSC band, respectively. In addition, its gain has 0.83 dBi, 2.1 dBi in COSPAS-SARSAT and GPS band, respectively.

MOCVD를 이용한 $BiSbTe_3$ 박막성장 및 열전소자 제작

  • Kwon, Sung-Do;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.425-425
    • /
    • 2008
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3mW is obtained at the temperature difference of 45K. We provide a promising approach for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which can employ nanostructures for high thermoelectric properties.

  • PDF

Design of an Ultra-Wideband LPDA Antenna for the Feeder of an Airborne Spinning Direction-Finding Reflector Antenna (공중 회전 방향탐지 반사판 안테나 급전기용 초광대역 LPDA 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.653-659
    • /
    • 2016
  • This paper proposes an ultra-wideband Log-Periodic Dipole Array(LPDA) antenna for the feeder of a reflector antenna to be used for airborne spinning direction-finding and detecting wideband signals. To obtain the ultra-wideband characteristics over the 20:1 bandwidth from S to Ka band, the radiation elements of the antenna were printed on a substrate and a wedge-typed dielectric supporter with robust structure was inserted between the substrates. Also, the center portion of the supporter was replaced by a styrofoam material to reduce the supporter weight. The 5-dB return loss of the designed LPDA antenna showed ultra-wideband characteristics, which are 37.57:1(1.09~40.95 GHz) in the simulation and 33.85:1(1.31~44.35 GHz) in the measurement. We achieved the required gains of 5.78 dBi in the simulation and 5.76 dBi in the measurement in the operating band. The proposed robust, light-weight, and ultra-wideband LPDA antenna confirmed that it can be applied for airborne applications.

Design of VHF Band Meander Sleeve Monopole Antenna for Satellite Communications (위성통신용 VHF대역 미앤더 슬리브 모노폴 안테나 설계)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.91-96
    • /
    • 2017
  • In this paper, we proposed a meander sleeve monopole antenna for low earth orbit satellite communications. The antenna has broadband property with the planar monopole and ground of meander sleeve. Monopole and ground conductors of the antenna are on the same plane, and exited through coaxial cable feeding. In order to confirm the property of antenna parameters, it was used a commercial software, HFSS, For the antenna fabrication, a FR4 dielectric substrate has a dielectric constant of 4.4 was used. The size of the antenna was $600mm{\times}20mm{\times}1.6mm$. Frequency band of the fabricated antenna was 130MHz~151MHz, and the bandwidth was 20MHz. Measurement results of the fabricated antenna, the return loss is more than -10dB return loss in the band could be obtained. Radiation pattern has a maximum gain of 2.64dBi value.

Design of the Wideband Microwave Absorber for X-band Applications (X-대역 응용을 위한 광대역 전파 흡수체 설계)

  • Hong, Young-Taek;Jeoung, Gu-Ho;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.749-755
    • /
    • 2017
  • In this paper, a wideband microwave absorber for X-band(8~12 GHz) applications is proposed. The structure of the proposed absorber unit cell consists of a resonator with a slot and slit, a backing ground plate, and a Taconic RF-30(${\varepsilon}_r=3$, $tan{\delta}=0.0014$) substrate with a dimension of $8.5{\times}8.5{\times}0.5mm^3$. The proposed absorber has a dual resonance at 9.83 and 10.37 GHz. To demonstrate the operating principle of the proposed absorber structure at each resonance frequency, the simulated current distributions on the unit cell are analyzed. To verify the performance of the proposed absorber, a prototype absorber was fabricated with a planar array of $20{\times}20$ unit cells. The measured results exhibit two absorptivity peaks stronger than 99 % and full-width at half-maximum(FWHM) bandwidth of 1.1 GHz(9.51~10.61 GHz).