• 제목/요약/키워드: Planar Jet

검색결과 42건 처리시간 0.021초

평면 제트류 응집구조의 근사적 표현에 관한 연구 (Approximation for the coherent structures in the planar jet flow)

  • 이찬희;이상환
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

Planar-Jet형 연소내 층류유동의 전산해석 (Numerical Study of Laminar Flow in a Combustor with a Planar Fuel Jet)

  • 엄준석;김도형;양경수;신동신
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1644-1651
    • /
    • 2000
  • In this study, the confined laminar flow and transport around a square cylinder with a planar fuel jet are numerically simulated. Both rear and front jets are considered, respectively. In each case, various ratios of the jet velocity to the fixed upstream velocity are taken into consideration. In case of the rear jet, the high mass-fraction region is formed along the streamlines from the jet exit, and the oscillation of the force on the square cylinder eventually disappears as the jet velocity is close to the upstream velocity. In case of the front jet, drag is significantly reduced when the jet velocity ratio is grater than 1. The results obtained exhibit flow and scalar-mixing charactered in a planar combustor.

Planar-Jet형 연소기 내 난류유동의 LES (Large-Eddy Simulation of Turbulent Flows in a Planar Combustor)

  • 김도형;양경수;신동신
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1409-1416
    • /
    • 2000
  • In this study, turbulent flows in a planar combustor which has a square rib-type flame holder are numerically investigated by Large Eddy Simulation(LES). Firstly, the flow fields with or without jet injection downstream of the flame-holder are examined using uniform inlet velocity. Comparison of the present LES results with experimental one shows a good agreement. Secondly, to investigate mixing of oxidizer(air) and fuel injected behind the flame holder, the scalar-transport equation is introduced and solved. From the instantaneous flow and scalar fields, complex and intense mixing phenomena between fuel and jet are observed. It is shown that the ratio of jet to blocked air velocity is an important factor to determine the flow structure. Especially, when the ratio is large enough, the fuel jet penetrates the main vortices shed from the flame holder, resulting in significant changes in the flow and scalar fields.

Karhunen-Loeve 변환을 이용한 Forcing 제트의 동적 특성 해석 (Dynamic characteristics analysis of forcing jet by Karhunen-Loeve transformation)

  • 이찬희;이상환
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.758-772
    • /
    • 1997
  • The snapshot method is introduced to approximate the coherent structures of planar forcing jet flow. The numerical simulation of flow field is simulated by discrete vortex method. With snapshot method we could treat the data efficiently and approximate coherent structures inhered in the planer jet flow. By forcing the jet at a sufficient amplitude and at a well-chosen frequency, the paring can be controlled in the region of the jet. Finally we expressed the underlying coherent structures of planar jet flow in the minimum number of modes by Karhunen-Loeve transformation in order to understand jet flow and to make the information storage and management in computers easier.

Jet가 분출되는 채널내 정사각단면 실린더 주위유동 및 혼합현상 (Confined laminar vortex shedding and scalar mixing around a square cylinder with a jet)

  • 엄준석;김도형;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.759-764
    • /
    • 2000
  • In this study, the confined laminar flow around a square cylinder, which ejects a either on the front face or on the rear face, is numerically simulated. In each case, three ratios of jet velocity to the fixed upstream velocity are considered. In all cases of the rear fuel jet, the high mass-fraction region is formed along the streamlines from the jet exit. In case of front jet, drag is significantly decreased when the jet velocity ratio is greater than 1. The results obtained exhibit flow and scalar-mixing characteristics encountered in a planar combustor

  • PDF

Planar Laser-Induced Fluorescence (PLIF) Measurements of a Pulsed Electrothermal Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.;Byungyou Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1808-1815
    • /
    • 2001
  • The characteristics of a pulsed plasma jet originating from an electrothermal capillary discharge have been investigate using laser-induced fluorescence (LIF) measurement. Previous emission measurements of a 3.1 kJ plasma jet show trial upstream of the Mach disk the temperature and electron number density are about 14,000 K and and 10$\^$17/ cm$\^$-3/, while downstream of the Mach dick tole values are about 25,000 K and 10$\^$18/ cm$\^$-3/, respectively. However, these values are barred on line-of-sight integrated measurements that may be misleading. Hence, LIF is being used to provide both spatially and temporally resolved measurements. Our recent work has been directed at using planar laser-induced fluorescence (PLIF) imaging of atomic copper in the plasma jet flow field. Copper is a good candidate for PLIF studies because it is present throughout the plasma and has electronic transitions that provide an excellent pump-detect strategy. Our PLIF results to date show that emission measurements may give a misleading picture of the flow field, as there appeals to be a large amount of relatively low temperature copper outside the barrel shock. which may lead to errors in temperature inferred from emission spectroscopy. In this paper, the copper LIF image is presented and at the moment, relative density of atomic copper, which is distributed in the upstream of the pulsed plasma jet, is discussed qualitatively.

  • PDF

평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석 (Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet)

  • 안대환;김동식
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

제한면을 가지는 이차원 층류 충돌젯의 수치적 연구 (A Numerical Study of Planar Laminar Impingement Jet with a Confinement Plate)

  • 강동진;오원태
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.414-423
    • /
    • 1994
  • The planar laminar impingement jet with a confinement plate has been studied numerically. Discretzing the convection term with the QUICKER scheme, the full Navier-Stokes equations for fluid flow were solved using the well known SIMPLER algorithm. The flow characteristics with Reynolds number and jet exit velocity profile effects on it were considered for H=3, Re=200 - 2000. Results show that vortical flow forms in turn along the confinement and impingement plates as the Reynolds number increases and such a complicated flow pattern has never been reported prior. The jet exit velocity profile is shown to do an important role in determining the position of vortex flow and its size as well as in stagnation and wall jet flow region. Parabolic jet exit profile results in peak of skin friction 1.4-1.6 times greater than that of uniform profile. The channel height effects are also studied and shown to have an effect on flow pattern similar to that of Reynolds number. Also shown is that effects of the jet exit velocity profile becomes less significant over a certain channel height.

평면 제트내의 평행하게 놓인 원형 실린더가 받는 항력과 양력 (Drag and Lift Forces of a Circular Cylinder Located Parallel to a Planar Jet)

  • 강신형;홍순삼
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.369-376
    • /
    • 1996
  • Variations of the drag and lift forces of a circular cylinder in a planar turbulent jet were experimentally investigated. The force was directly measured using the load cell and estimated by integrating the pressure distribution on the cylinder. As the cylinder moves outward from the center of the jet, the direction of lift force changes and the drag force decreases. Reynolds number, the ratio of cylinder's diameter to half width of jet had effect on maximum drag coefficient and the location where the direction of lift changes.

평면충돌제트에 의한 단상 및 비등 열전달의 국소적 측정 (The Local Measurements of Single Phase and Boiling Heat Transfer by Confined Planar Impinging Jets)

  • 우성제;신창환;조형희
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.895-901
    • /
    • 2004
  • Single-phase convection and nucleate boiling heat transfer were locally investigated for confined planar water jets. The detailed distributions of the wall temperature and the convection coefficient as well as the typical boiling curves were discussed. The curve for the single-phase convection indicated the developing laminar boundary layer, accompanied by monotonic increase of the wall temperature in the stream direction. Boiling was initiated from the furthest downstream as heat flux increased. Heat transfer variation according to the streamwise location was reduced as heat flux increased enough to create the vigorous nucleate boiling. Velocity effects were considered for the confined free-surface jet. Higher velocity of the jet caused the boiling incipient to be delayed more. The transition to turbulence precipitated by the bubble-induced disturbance was obvious only for the highest velocity, which enabled the boiling incipient to start in the middle of the heated surface, rather than the furthest downstream as was the case of the moderate and low velocities. The temperature at offset line were somewhat tower than those at the centerline for single-phase convection and partial boiling, and these differences were reduced as the nucleate boiling developed. For the region prior to transition, the convection coefficient distributions were similar in both cases while the temperatures were somewhat lower in the submerged jet. For single-phase convection, transition was initiated at $x/W{\cong}2.5$ and completed soon for the submerged jet, but the onset of transition was retarded to the distance at $x/W{\cong}6$ for the fee-surface jet.