• Title/Summary/Keyword: Plain concrete

Search Result 624, Processing Time 0.029 seconds

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Reliability based partial safety factor of concrete containing nano silica and silica fume

  • Nanda, Anil Kumar;Bansal, Prem Pal;Kumar, Maneek
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.385-395
    • /
    • 2020
  • The influence of combination of nano silica and silica fume, as partial cement replacement materials, on the properties of concrete has been studied through the measurement of compressive strength. The compressive strength of concrete in terms of mean, standard deviation and with-in-test coefficient of variation related to the variation in the nominated parameters have also been developed. The compressive strength data developed experimentally has been analyzed using normal-probability distribution and partial safety factors of composite concretes have been evaluated by using first order second moment approach with Hasofer Lind's method. The use of Nano silica and silica fume in concrete decreases the partial safety factor of concrete i.e., increase the reliability of concrete. The experimental results show that the properties of concrete having nano silica and silica fume in combination were better than that of a plain concrete. The SEM test results showing the level of Ca(OH)2 in plain concrete and consumption level Ca(OH)2 of concrete containing nano silica & silica fume have also been presented.

The Confinement Effect on the Shear Stiffness of Inner Shear Connections in Concrete-filled Steel-Concrete Composite Girder (콘크리트로 충지된 강.콘크리트 합성거더의 구속효과가 내부 전단연결부 강도에 미치는 영향)

  • Lee, Sang-Yoon;Kim, Jung-Ho;Lee, Seung-Yong;Park, Kyung-Hoon;Lee, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.229-232
    • /
    • 2008
  • Researches on the steel-concrete composite girder filled with plain concrete have been being actively performed on the grounds that this type of girder has constructional, structural and aesthetical benefits. As a part of studies on the characteristics of inner shear connections in the concrete-filled steel-concrete composite girder with plain concrete, the confinement effect on the stiffness of inner shear connections was examined in this study. In the case of concrete-filled steel-concrete composite girder, it can be expected that the stiffness of shear connections may be increased in comparison with the case not confined. Therefore, the experimental studies were performed with the confinement effect as a parameter, and the results are discussed in this paper.

  • PDF

A Study on Reducing Deterioration in Long-span Slab Concrete (장스팬 슬라브 콘크리트의 열화저감에 대한 연구)

  • Kim, Dae-Geon;Cha, Hun;Choi, Sang-Hwan;Moon, Kyeong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.11-12
    • /
    • 2014
  • In this study, fundamental properties of concrete mixed with fiber has been analysed. Compressive strength, tensile strength and plastic shrinkage has been tested to conduct the optimum addition ratio of fiber. Effect to control press concrete's cracking has been tested. The following results could be made as the conclusion. For the flowability, slump decreased about 41-79% when all types of fiber used in the concrete. When the addition ratio of fiber is 1.2%, the slump of concrete decreased about 45%. For the strength properties. all the specimens with different addition ratio of fiber shown higher compressive strength comparing with Plain. Comparing with Plain, cracking decreased when the fiber added. Especially, when NY fiber used in the concrete, the plastic shrinkage did not occurred. In addition, Latex modified concrete(LMC) has improved superior physical and chemical properties. The properties of latex, combined with the low water-cement ratio, produce a concrete that has improved flexural, tensile, and bond strength, lower modulus of elasticity, increased freeze-thaw resistance, and reduced permeability compared to conventional concrete of similar mix design.

  • PDF

Enhanced Durability Performance of High Early Strength Concrete for Early Traffic Opening (조기교통개방 콘크리트의 내구성능 향상에 관한 연구)

  • 원종필;김현호;안태송
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.362-370
    • /
    • 2001
  • The internal or external restraint of thermal and dry shrinkage movements could thus generate tensile stresses in concrete pavement for early traffic opening. Restrained shrinkage and thermal stresses could produce microcracks in concrete which increase its permeability and accelerate its long-term deterioration under weathering and load effects. Fiber reinforced concrete is an effective approach to the control of microcrack and crack development under tensile stresses. This study aims at evaluation of the durability of high early strength concrete for early traffic opening and increase of service life. Three different types of regulated-set cement which recently has been used much in Korea were adopted. Fibers were added and their mixtures were compared with plain high early strength concrete mixture. The use of fibers increased durability performance of high early strength concrete using regulated-set cement than the corresponding plain mixtures.

Multi-gene genetic programming for the prediction of the compressive strength of concrete mixtures

  • Ghahremani, Behzad;Rizzo, Piervincenzo
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • In this article, Multi-Gene Genetic Programming (MGGP) is proposed for the estimation of the compressive strength of concrete. MGGP is known to be a powerful algorithm able to find a relationship between certain input space features and a desired output vector. With respect to most conventional machine learning algorithms, which are often used as "black boxes" that do not provide a mathematical formulation of the output-input relationship, MGGP is able to identify a closed-form formula for the input-output relationship. In the study presented in this article, MGPP was used to predict the compressive strength of plain concrete, concrete with fly ash, and concrete with furnace slag. A formula was extracted for each mixture and the performance and the accuracy of the predictions were compared to the results of Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) algorithms, which are conventional and well-established machine learning techniques. The results of the study showed that MGGP can achieve a desirable performance, as the coefficients of determination for plain concrete, concrete with ash, and concrete with slag from the testing phase were equal to 0.928, 0.906, 0.890, respectively. In addition, it was found that MGGP outperforms ELM in all cases and its' accuracy is slightly less than ANN's accuracy. However, MGGP models are practical and easy-to-use since they extract closed-form formulas that may be implemented and used for the prediction of compressive strength.

Effects of the Water Reducing Agent on the Concrete (減水劑가 콘크리트에 미치는 影響)

  • Kim, Jong-Cheon;Doh, Duk-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 1982
  • A study on the effect of water reducing agent on the various characteristics of concrete has been conducted. The experimental results of the study are summarized as follows. 1. Slump test for the concrete added water reducing setretarding agent in proper quantity have been conducted. According to the test results, the decreasing rate of slump value become bigger than plain concrete with increase of the unit weight of cement and elapse of time 2. In case the proper quantity content of maximum compressive strength in Fig. 5 of water reducing set retarding agent is added, unit weight of water is decreased about 15% or so as compared with plain concrete. with the increase of water reducing set accelerating agent content unit weight of water is decreased much more, And other hand, amount of air entraining shows the increasing tendency with the increase of water reducing agent content. 3. The adding rate of water reducing agent which produce maximum strength shows that WR-CH and WR-SA which is water reducing set-starding agent is 0.2% and WR-CO is 0.5% and that WS-PO which is water reducing set accelerating agent is 0.5 4. compressive strength jof the concrete made of sulfate resistant cement shows less than the strength of normal portland cement at initial strength but the strength of both cement shows almost same at curing age of 28 days. 5. when proper quantity of water reducing set retarding agent is used, boned strength is increased about 15% at curing age of 28days. 6. According to the result of durability test, dynamic young's mudulus of elasticity at plain concrete is decreased about 50% as compared with initial step at 300 cycle of freezing and thawing after curing age of days. on the contarary the concrete used water reducing agent is decreased less than 7%.

  • PDF

Study on fracture characteristics of reinforced concrete wedge splitting tests

  • HU, Shaowei;XU, Aiqing;HU, Xin;YIN, Yangyang
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.337-354
    • /
    • 2016
  • To study the influence on fracture properties of reinforced concrete wedge splitting test specimens by the addition of reinforcement, and the restriction of steel bars on crack propagation, 7 groups reinforced concrete specimens of different reinforcement position and 1 group plain concrete specimens with the same size factors were designed and constructed for the tests. Based on the double-K fracture criterion and tests, fracture toughness calculation model which was suitable for reinforced concrete wedge splitting tensile specimens has been obtained. The results show that: the value of initial craking load Pini and unstable fracture load Pun decreases gradually with the distance of reinforcement away from specimens's top. Compared with plain concrete specimens, addition of steel bar can reduce the value of initial fracture toughness KIini, but significantly increase the value of the critical effective crack length ac and unstable fracture toughness KIun. For tensional concrete member, the effect of anti-cracking by reinforcement was mainly acted after cracking, the best function of preventing fracture initiation was when the steel bar was placed in the middle of the crack, and when the reinforcement was across the crack and located away from crack tip, it plays the best role in inhibiting the extension of crack.

Degradation reliability modeling of plain concrete for pavement under flexural fatigue loading

  • Jia, Yanshun;Liu, Guoqiang;Yang, Yunmeng;Gao, Ying;Yang, Tao;Tang, Fanlong
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.469-478
    • /
    • 2020
  • This study aims to establish a new methodological framework for the evaluation of the evolution of the reliability of plain concrete for pavement vs number of cycles under flexural fatigue loading. According to the framework, a new method calculating the reliability was proposed through probability simulation in order to describe a random accumulation of fatigue damage, which combines reliability theory, one-to-one probability density functions transformation technique, cumulative fatigue damage theory and Weibull distribution theory. Then the statistical analysis of flexural fatigue performance of cement concrete tested was carried out utilizing Weibull distribution. Ultimately, the reliability for the tested cement concrete was obtained by the proposed method. Results indicate that the stochastic evolution behavior of concrete materials under fatigue loading can be captured by the established framework. The flexural fatigue life data of concrete at different stress levels is well described utilizing the two-parameter Weibull distribution. The evolution of reliability for concrete materials tested in this study develops by three stages and may corresponds to develop stages of cracking. The proposed method may also be available for the analysis of degradation behaviors under non-fatigue conditions.

Study on Strength Development of Concrete for Top-Down Method (역타공법에 적용을 위한 콘크리트 강도성상 연구)

  • 정근호;이종균;김영회;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.48-53
    • /
    • 1998
  • The purpose of this study to fine the mixture of concrete for Top-Down method. As a result, In fresh concrete, slump value and slump-flow value were increased as fly ash concrete(10% ratio). When plasticizer was added 1.5% by weigh of binder in concrete, no fly ash concrete and fly ash concrete(10% ratio) all occurred segregation. And, no fly ash concrete and fly concrete(10% ratio) all showed compressive strength development close plain concrete as increasing plasticizer quantity. Especially, in case of 1.5% plasticizer of binder showed high compressive strength development.

  • PDF