• Title/Summary/Keyword: Plain Weave Composite

Search Result 43, Processing Time 0.021 seconds

Formability of Thermoplastic Laminar Composite depending on the Types of- Fabric (Fabric 형태에 따른 열가소성수지 적층복합재료의 성형성)

  • Shin, Ick-Jae;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1338-1346
    • /
    • 2003
  • Three-dimensional formability of the thermoplastic laminar composite was studied according to manufacturing conditions. Five different types of the plain weave fabric were used as reinforcement with PET matrix. The square blank was made by press consolidation technique and formed in the type hemisphere. B-factor defined as the ratio of width of yarn and distance between yarns was used as the factor of formability in the type of plain weave fabric. The formability of PET/Glass fabric laminar composite was estimated in terms of forming rate and B-factor with the thickness distribution, area ratio of blank, and intra-ply shear angle. The thickness distribution across hemisphere was strongly affected by the B-factor, forming rate and blank thickness. The area ratio of blank was increased with B-factor, forming rate and blank thickness. Also, it was found that the intra-ply shear angle depends on the B-factor and forming rate.

A Statistical Study of Effective Properties due to Fiber Tow Misalignment and Thickness Change for Plain Weave Textile Composites (섬유다발 배열 및 적층수에 따른 평직복합재료 등가물성치의 변화에 관한 통계적 연구)

  • 우경식;서영욱
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.63-72
    • /
    • 2000
  • In this paper, statistical treatments of effective properties for plain weave textile composites were presented. Configurations up to 32 layers with varied stacking phase shifts were considered. Effective properties were calculated by numerical simulation in which uni-axial tensile and shear load were applied at unit cell. Sample analysis was utilized to consider the inherent randomness in the phase shift and the results were treated statistically. It was found that effective properties were dependent on stacking phase shifts for thin plain weave textile composites. The distribution of $E_{xx}$ and $V_{xy}$ were skewed and the range of possible values was relatively large. As the number of layers increased, however, the distribution width became narrower and mean values converged. In contrast, $G_{xy}$ was not affected by phase shifts and thickness changes.

  • PDF

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

Prediction of Effective Properties of Laminated Plain Weave Textile Composites (적층각을 가지는 평직복합재료 적층판의 등가물성치 예측)

  • U,Gyeong-Sik;Seo,Yeong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.10-20
    • /
    • 2003
  • In this study, the effective properties were numerically calculated for laminated plain weave textile composites with arbitrary s tacking orientation angles. A single-field macroelement with modified sub-domain integration was used in the analysis to reduce computer resource requirement while efficiently accounting for the internal microstructure. A sample calculation procedure based on the Monte Carlo method was employed to consider the random shift between the layers. Results showed that a significant deviation occurred when the orientation angles were near 0 deg for extensional modulus and Poisson's ratio and 45 deg for the shear modulus. It was also found that the average properties calculated by the 2-layer numerical specimen had large differences compared to the CLT results, which indicated that a caution must be needed when designig of thin plain weave composite structures.

Stress Analysis on Composite Cylindrical Shells with a Reinforced Cutout Subjected to Axial Load (보강 개구부가 있는 복합재료 원통셸의 축방향 하중에 따른 응력해석)

  • 이영신;류충현;김영완
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.211-214
    • /
    • 1999
  • The stress distribution around the cutout of composite cylindrical shells with a circular or elliptical reinforced cutout subjected to axial compression or tension is studied by asymptotic method. Analytical solutions used a Donnell type orthotropic shell theory are presented by the defined stress concentration factor and are compared to experimental results. The experiment used the universal testing machine (UTM), strain gage and fixtures designed/manufactured for axial tension test of a cylindrical shell is carried and the composite material used in the experiment is plain weave glass fiber reinforced plastic (GFRP).

  • PDF

Crimp Angle Dependence of Effective Properties for 3-D Weave Composite (굴곡각에 따른 3차원 평직 복합재료의 등가 물성치 예측)

  • Choi, Yun-Sun;Woo, Kyeongsik
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • In this study, geometric modeling and finite element analysis of 3-dimensional plain weave composite unit cell consisting of 3 interlaced fiber tows and resin pocket were performed to predict effective properties. First, tow properties were obtained from micro-mechanics finite element unit cell analysis, which were then used in the meso-mechanics analysis. The effective properties were obtained from a series of unit cell analyses simulating uniaxial tensile and shear tests. Analysis results were compared to the analysis and experimental results in the literature. Various crimp angles were considered and the effect on the effective properties was investigated. Initial failure strengths and failure sequence were also examined.

Buckling Behavior of Composite Cylindrical Shells Under Torsion (복합재 원통쉘의 비틀림좌굴 거동)

  • 강인식;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.9-12
    • /
    • 2000
  • This paper deals with the torsional buckling behavior of plain weave GFRP composite cylindrical shells having comparatively small length-to-diameter ratio. Boundary conditions corresponding to clamped ends and simply supported ends are considered. Torsional buckling loads and circumferential mode numbers according to the variation of shell length-to-radius ratio are conformed. To verify the availability of the theoretical results, comparison with the theoretical and experimental results are made.

  • PDF

Progressive Damage Analysis of Plain Weave Fabric CFRP Orthogonal Grid Shell Under Bending Load (굽힘 하중을 받는 평직물 CFRP 직교 격자 쉘의 점진적 손상 해석)

  • Lim, Sung June;Baek, Sang Min;Kim, Min Sung;Park, Min Young;Park, Chan Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.256-265
    • /
    • 2019
  • In this paper, the progressive damage of an orthogonal grid shell fabricated with plain weave fabric CFRP under bending load was investigated. The orthogonal grids were cured with the bottom composite shell. Progressive damage analysis of an orthogonal grid shell under bending was performed using nonlinear finite element method with Hashin-Rotem failure criterion and Matzenmiller-Lubliner-Taylor(MLT) model. In addition, the three - point bending test for the structure was carried out and the test results were compared with the analysis results. The comparison results of the strain and displacement agreed well. The damage area estimated by the progressive damage analysis were compared with the visual inspection and ultrasonic non-destructive inspection.

An Estimation of Deformation for Composites by DIC (DIC에 의한 복합재료 변형측정)

  • Kwon, Oh-Heon;Kang, Ji-Woong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.78-84
    • /
    • 2014
  • The estimation of deformation and strain for the twill-weave carbon fiber reinforced plastic composite(CFRP) during the test with a digital image correlation system were implemented experimentally. The carbon fiber reinforced plastic composites have been developed as the edge technology materials. The plain, twill and satin weave types are commonly used for the CFRP composites. Thus, it is essential to find the deformation characteristics for those types of CFRP more easily. Especially the DIC method can express the visual strain distributions at the full range of the interested areas in the structures. In this study, the mechanical properties of twill-weave CFRP composite and the variation of strains in a full field of the specimen were estimated. The experiments were performed under a tensile loading and 3-point bending test with strain gages. Futhermore the DIC deformation results were estimated for the comparison. The results showed the deformation and strain contours visually well in all region of the interested areas and so usefulness for the safety control of the structures.

The Evaluation of Fracture Toughness on Mode I for Twill CFRP/GFRP Laminated Hybrid Composites (능직 CFRP/GFRP 적층하이브리드 복합재의 Mode I 파괴인성 평가)

  • Roh, Young Woo;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.9-14
    • /
    • 2020
  • In order to realize high strength and light weight for various industrial facilities and structural materials, various new materials are applied to product design. Among them, CFRP has excellent specific strength and non-rigidity, and the scope of use is expanding throughout the industry, such as mobility products and building materials. GFRP is cheaper than CFRP, and has excellent specific strength and non-rigidity, and has excellent heat resistance and sound insulation, so it has been adopted as a core material for flooring and interior flooring. CFRP of twill weave structure has better resistance to deformation of fiber than plain weave structure, so the outermost layer is applied as twill weave structure in product design. After fabrication with DCB specimens, Mode I fracture toughness was evaluated according to the crack length. As the crack length increases, the energy release rate and stress intensity factor values tended to decrease overall.