• Title/Summary/Keyword: Placement Height

Search Result 169, Processing Time 0.034 seconds

Parametric Analysis on Construction Conditions to Control Thermal Cracks in Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 시공조건별 해석적 영향 분석)

  • 김연태;김상철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.312-318
    • /
    • 2004
  • The wall in a subway structure is easily subject to crack occurrence since its expansion and shrinkage associated with hydration heat reaction is constrained by the slab. The greater problem is that the crack in the wall may be developed to pass through thickness and eventually deteriorate the structure due to rusting of reinforced steel. Thus, this study aims at controlling thermal cracks as much as possible and determining an optimized size of concrete placement through hydration heat analysis. For this study, effects of placement height, length, temperature and types of cement on the thermal cracks were evaluated by temperature rise, thermal stress and crack index. As results of parametric study, it was found that placement height and length do not have an effect on the temperature rise but have significant one on thermal stress which relates to direct possibility of thermal crack occurrence. This means that proper selection of size balancing internal constraint with external one is much more important than reducing the placement height and length simply. In order to prevent from thermal cracks most effectively, in addition, it was noted to reduce placement temperature and to use the cement blended with mineral admixture.

Analysis for the Control of Thermal Cracks in a Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 수화열해석)

  • Kim, Sang-Chel;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1205-1210
    • /
    • 2004
  • Cracks in the underground structures are mainly observed due to internal ununiformity of thermal stresses or restraint of structural movement in associate with rapid temperature gradient. Especially, thermal cracks are known to occur easily in a massive structure, but possibility of these depend on the amount of cement applied and ratio of span to height of the structure even though the thickness is less than specification‘s. Thus, this study aims at how to control thermal cracks in a massive subway structure and figures out an optimized construction method and procedure. As results of parametric study for length, height and outer temperature for concrete placement, it is found that hydration heats were not affected by both length and height of concrete placement but thermal stresses were greatly dependent. Most effective ways of controling thermal cracks were to fit a proper ratio of length to height of concrete placement and to decrease temperature of concrete placement as much as possible.

  • PDF

Bone-added osteotome sinus floor elevation with simultaneous placement of non-submerged sand blasted with large grit and acid etched implants: a 5-year radiographic evaluation

  • Jung, Jee-Hee;Choi, Seong-Ho;Cho, Kyoo-Sung;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.2
    • /
    • pp.69-75
    • /
    • 2010
  • Purpose: Implant survival rates using a bone-added osteotome sinus floor elevation (BAOSFE) procedure with simultaneous placement of a non-submerged sand blasted with large grit and acid etched (SLA) implant are well documented at sites where native bone height is less than 5 mm. This study evaluated the clinical results of non-submerged SLA Straumann implants placed at the time of the BAOSFE procedure at sites where native bone height was less than 4 mm. Changes in graft height after the BAOSFE procedure were also assessed using radiographs for 5 years after the implant procedure. Methods: The BAOSFE procedure was performed on 4 patients with atrophic posterior maxillas with simultaneous placement of 7 non-submerged SLA implants. At least 7 standardized radiographs were obtained from each patient as follows: before surgery, immediately after implant placement, 6 months after surgery, every year for the next 3 years, and after more than 5 years had passed. Clinical and radiographic examinations were performed at every visit. Radiographic changes in graft height were calculated with respect to the implant's known length and the original sinus height. Results : All implants were stable functionally, as well as clinically and radiographically, during the follow-up. Most of the radiographic reduction in the grafted bone height occurred in the first 2 years; reduction after 2 years was slight. Conclusions: The simultaneous placement of non-submerged SLA implants using the BAOSFE procedure is a feasible treatment option for patients with severe atrophic posterior maxillas. However, the grafted bone height is reduced during the healing period, and patients must be selected with care.

Analytical Study on the Improvement of Concrete Placement in a Massive Wall-Structure (매스콘크리트 벽체구조물의 타설개선을 위한 해석적 연구)

  • 김진근;김상철;이두재;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.539-545
    • /
    • 1997
  • Since the length of massive wall-structure is generally longer and larger than its thickness and a lift height of concrete of placement, cracks induced by hydration heat are governed by outer structural restriction rather than inner one. However, the degree of restriction control is expected to be affected by the sizes of wall thickness, length and a lift height. Thus, this analytical study aims at the development of relationship among those to minimize thermal cracks. In addition, the effect of types of cement on the thermal heats and stresses is evaluated for anti-sulphate and 2blended Portland cements concrete. It was found from analytical study that a lift height of concrete placement is the most important factor controlling thermal cracks, and the increase of lift heights is not always detrimental to structural safety.

  • PDF

Implant placement with inferior alveolar nerve repositioning in the posterior mandible

  • Doogyum Kim;Taeil Lim;Hyun-Woo Lee;Baek-Soo Lee;Byung-Joon Choi;Joo Young Ohe;Junho Jung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.6
    • /
    • pp.347-353
    • /
    • 2023
  • This case report presents inferior alveolar nerve (IAN) repositioning as a viable approach for implant placement in the mandibular molar region, where challenges of severe alveolar bone width and height deficiencies can exist. Two patients requiring implant placement in the right mandibular molar region underwent nerve transposition and lateralization. In both cases, inadequate alveolar bone height above the IAN precluded the use of short implants. The first patient exhibited an overall low alveolar ridge from the anterior to posterior regions, with a complex relationship with adjacent implant bone level and the mental nerve, complicating vertical augmentation. In the second case, although vertical bone resorption was not severe, the high positioning of the IAN within the alveolar bone due to orthognathic surgery raised concerns regarding adequate height of the implant prosthesis. Therefore, instead of onlay bone grafting, nerve transposition and lateralization were employed for implant placement. In both cases, the follow-up results demonstrated successful osseointegration of all implants and complete recovery of postoperative numbness in the lower lip and mentum area. IAN repositioning is a valuable surgical technique that allows implant placement in severely compromised posterior mandibular regions, promoting patient comfort and successful implant placement without permanent IAN damage.

Effects of Foot Placement and Height of Bed Surface on Load of the Lumbar Spine During Transfer Activity (인체모형 옮기기 시 발의 배치와 옮기는 지면 높이가 허리척추에 미치는 영향)

  • Kim, Won-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.283-291
    • /
    • 2010
  • The purpose of this study was to investigate the effect of foot placement and height of bed surface on lumbar spine load in a dummy transfer activity. Fifteen healthy male students participated in this study. All subjects were involved in four different conditions according to foot placement (11 figure and $90^{\circ}$ figure) and height of bed surface (44 cm and 66 cm) randomly. Muscular activations of the biceps brachii, rectus femoris, elector spinae using surface-EMG, vertical ground reaction using force plate, and L4/L5 compression force using 3DSSPP (3D Static Strength Prediction Program) were measured and analysed. The results showed that muscular activations were not significantly different for the various conditions except for the rectus femoris on the right side (p<.05). Futhermore, the vertical ground reaction and L4/L5 compression force were significantly different conditions (p<.05). In conclusion, it is suggested that foot placement at $90^{\circ}$ figure is safer for transfer activity compared with the 11 figure.

Evaluation of Construction RCB Exterior Wall Formwork according to Placing Height on Nuclear Power Plant

  • Song, Hyo-Min;Sohn, Young-Jin;Shin, Yoonseok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.653-660
    • /
    • 2015
  • Technologies for reducing construction duration are key factors in nuclear power plant construction projects, as a reduction in construction duration at the construction phase leads to a reduction in construction cost and an increase in profits through the early operation of the nuclear power plant. To analyze the constructability of the height of single-layer placement of formwork for the Reactor Containment Building (RCB) exterior wall through lateral pressure according to the height of concrete placement, the deformation criteria for formwork, and a new form design, 'MIDAS GEN (hereinafter referred to as MIDAS)' is used in this study. The cost and workload of formwork are derived according to the unit of height of the RCB exterior wall. Based on the result, it was found that the higher the RCB exterior wall, the higher the material cost, and the less the construction duration and the less the total number of formwork layers. Based on this result, it is believed that the material cost and the construction duration can be appropriately determined according to the formwork height.

Effects of a Lift Height on the Thermal Cracking in Wall Structures

  • Kim, Sang-Chel
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2000
  • Once a structure fabricated with mass concrete is in a form of wall such as retaining wall, side walls of a concrete caisson and so on, cracks induced by hydration heat have been known to be governed by exterior restraints which are mainly related to the boundary conditions of the structure. However, it is thought that the degree of restraints can be alleviated considerably only if a lift height of concrete placement or a panel size of the wall is selected properly before construction. As a way of minimizing thermal cracking commonly observed in massive wall-typed structure, this study aimed at evaluating effects of geometrical configuration on the temperature rise and thermal stress through parametric study. Evaluation of the effect was also performed for cement types using anti-sulphate cement, blast furnace slag cement and cement blended with two mineral admixture and one ordinary Portland Cement. so called ternary blended cement. As a result of analytical study, it was found that a lift height of concrete placement is the most important factor in controlling thermal cracking in massive wall, and the increase of a lift height is not always positive to the crack occurrence as not expected.

  • PDF

Anatomic Feasibility of Posterior Cervical Pedicle Screw Placement in Children : Computerized Tomographic Analysis of Children Under 10 Years Old

  • Lee, HoJin;Hong, Jae Taek;Kim, Il Sup;Kim, Moon Suk;Sung, Jae Hoon;Lee, Sang Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.475-481
    • /
    • 2014
  • Objective : To evaluate the anatomical feasibility of 3.5 mm screw into the cervical spine in the pediatric population and to establish useful guidelines for their placement. Methods : A total of 37 cervical spine computerized tomography scans (24 boys and 13 girls) were included in this study. All patients were younger than 10 years of age at the time of evaluation for the period of 2007-2011. Results : For the C1 screw placement, entry point height (EPH) was the most restrictive factor (47.3% patients were larger than 3.5 mm). All C2 lamina had a height larger than 3.5 mm and 68.8% (51/74) of C2 lamina had a width thicker than 3.5 mm. For C2 pedicle width, 55.4% (41/74) of cases were larger than 3.5 mm, while 58.1% (43/74) of pedicle heights were larger than 3.5 mm. For pedicle width of subaxial spine, 75.7% (C3), 73% (C4), 82.4% (C5), 89.2% (C6), and 98.1% (C7, 1/54) were greater than 3.5 mm. Mean lamina width of subaxial cervical spine was 3.1 (C3), 2.7 (C4), 2.9 (C5), 3.8 (C6), and 4.0 mm (C7), respectively. Only 34.6% (127/370) of subaxial (C3-7) lamina thickness were greater than 3.5 mm. Mean length of lateral mass for the lateral mass screw placement was 9.28 (C3), 9.08 (C4), 8.81 (C5), 8.98 (C6), and 10.38 mm (C7). Conclusion : C1 lateral mass fixation could be limited by the morphometrics of lateral mass height. C2 translamina approach is preferable to C2 pedicle screw fixation. In subaxial spines, pedicle screw placement was preferable to trans-lamina screw placement, except at C7.

Immediate implant placement in conjunction with guided bone regeneration and/or connective tissue grafts: an experimental study in canines

  • Lim, Hyun-Chang;Paeng, Kyeong-Won;Kim, Myong Ji;Jung, Ronald E.;Hammerle, Christoph HF.;Jung, Ui-Won;Thoma, Daniel S.
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.170-180
    • /
    • 2022
  • Purpose: This study was conducted to assess the effect of hard and/or soft tissue grafting on immediate implants in a preclinical model. Methods: In 5 mongrel dogs, the distal roots of P2 and P3 were extracted from the maxilla (4 sites in each animal), and immediate implant placement was performed. Each site was randomly assigned to 1 of the following 4 groups: i) gap filling with guided bone regeneration (the GBR group), ii) subepithelial connective tissue grafting (the SCTG group), iii) GBR and SCTG (the GBR/SCTG group), and iv) no further treatment (control). Non-submerged healing was provided for 4 months. Histological and histomorphometric analyses were performed. Results: Peri-implant tissue height and thickness favored the SCTG group (height of periimplant mucosa: 1.14 mm; tissue thickness at the implant shoulder and ±1 mm from the shoulder: 1.14 mm, 0.78 mm, and 1.57 mm, respectively; median value) over the other groups. Bone grafting was not effective at the level of the implant shoulder and on the coronal level of the shoulder. In addition, simultaneous soft and hard tissue augmentation (the GBR/SCTG group) led to a less favorable tissue contour compared to GBR or SCTG alone (height of periimplant mucosa: 3.06 mm; thickness of peri-implant mucosa at the implant shoulder and ±1 mm from the shoulder: 0.72 mm, 0.3 mm, and 1.09 mm, respectively). Conclusion: SCTG tended to have positive effects on the thickness and height of the periimplant mucosa in immediate implant placement. However, simultaneous soft and hard tissue augmentation might not allow a satisfactory tissue contour in cases where the relationship between implant position and neighboring bone housing is unfavorable.