• Title/Summary/Keyword: Pixel-Based

Search Result 1,741, Processing Time 0.031 seconds

Granular noise analysis in pixel-to-pixel mapping-based computational integral imaging (화소 대 화소 매핑 기반 컴퓨터 집적 영상에서의 그래눌라 잡음 해석)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1363-1368
    • /
    • 2011
  • This paper describes an analysis on the granular noise in pixel-to-pixel mapping-based computational integral imaging. The pixel mapping-based method provides a high-resolution reconstructed images and also its computational cost is very lower than the previous back-projection-based method. In this paper, a signal model for the pixel mapping-based method is introduced, which defines and analyzes the granular noise. Computer experiments provides the granular noise properties based on the proposed signal model. The experimental results indicates that the granular noise pattern differs from that of the back-projection based method. The results is also utilized in the pixel mapping-based method.

U2Net-based Single-pixel Imaging Salient Object Detection

  • Zhang, Leihong;Shen, Zimin;Lin, Weihong;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • At certain wavelengths, single-pixel imaging is considered to be a solution that can achieve high quality imaging and also reduce costs. However, achieving imaging of complex scenes is an overhead-intensive process for single-pixel imaging systems, so low efficiency and high consumption are the biggest obstacles to their practical application. Improving efficiency to reduce overhead is the solution to this problem. Salient object detection is usually used as a pre-processing step in computer vision tasks, mimicking human functions in complex natural scenes, to reduce overhead and improve efficiency by focusing on regions with a large amount of information. Therefore, in this paper, we explore the implementation of salient object detection based on single-pixel imaging after a single pixel, and propose a scheme to reconstruct images based on Fourier bases and use U2Net models for salient object detection.

An Efficient Edge Detection Technique for Separating Regions in an Image (영상내에서 영역 구분을 위한 효율적인 경계검출 기법)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.359-360
    • /
    • 2021
  • The pixel-based processing of an image refers to a process of converting a value of one pixel only depending on the value of the current pixel, regardless of the value of another pixel. Pixel-based processing is used as the most basic operation in many fields such as image conversion, image enhancement, and image synthesis. There are processing methods such as arithmetic operation, histogram smoothing, and contrast stretching. In this paper, in order to clearly distinguish the tidal flat region from the tidal flat image of the west coast taken with a drone, we seek a method to find an efficient outline using pixel-based processing in the boundary detection part of the pre-processing process.

  • PDF

Spatial Compare Filter Based Real-Time dead Pixel Correction Method for Infrared Camera

  • Moon, Kil-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose a new real-time dead pixel detection method based on spatial compare filtering, which are usually used in the small target detection. Actually, the soft dead and the small target are cast in the same mold. Our proposed method detect and remove the dead pixels as applying the spatial compare filtering, into the pixel outputs of a detector after the non-uniformity correction. Therefore, we proposed method can effectively detect and replace the dead pixels regardless of the non-uniformity correction performance. In infrared camera, there are usually many dead detector pixels which produce abnormal output caused by manufactural process or operational environment. There are two kind of dead pixel. one is hard dead pixel which electronically generate abnormal outputs and other is soft dead pixel which changed and generated abnormal outputs by the planning process. Infrared camera have to perform non-uniformity correction because of structural and material properties of infrared detector. The hard dead pixels whose offset values obtained by non-uniformity correction are much larger or smaller than the average can be detected easily as dead pixels. However, some dead pixels(soft dead pixel) can remain, because of the difficulty of uncleared decision whether normal pixel or abnormal pixel.

Sub-pixel Evaluation with Frequency Response Analysis

  • OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.14-22
    • /
    • 2001
  • The frequency responses on the sub-pixel evaluation technique were investigated using the Monte-calro Simulation technique. The frequency response by the FFT based cross-correlation gives very good results, however, the gain loss does exist for the small displacement, (less than 0.5 pixel). While, the no gain loss is observed in the Direct Cross-correlation, however, the sub-pixel accuracy was limited to be about 0.1 pixel, i.e., it could not detect the small displacement. To detect the higher accurate sub-pixel displacement, the gradient based technique is the best. For the small interrogation area (e.g., 4x4), only the gradient technique can detect the small displacement correctly.

  • PDF

A Fast Half Pixel Motion Estimation Method based on the Correlations between Integer pixel MVs and Half pixel MVs (정 화소 움직임 벡터와 반 화소 움직임 벡터의 상관성을 이용한 빠른 반 화소 움직임 추정 기법)

  • Yoon HyoSun;Lee GueeSang
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.131-136
    • /
    • 2005
  • Motion Estimation (ME) has been developed to remove redundant data contained in a sequence of image. And ME is an important part of video encoding systems, since it can significantly affect the qualify of an encoded sequences. Generally, ME consists of two stages, the integer pixel motion estimation and the half pixel motion estimation. Many methods have been developed to reduce the computational complexity at the integer pixel motion estimation. However, the studies are needed at the half pixel motion estimation to reduce the complexity. In this paper, a method based on the correlations between integer pixel motion vectors and half pixel motion vectors is proposed for the half pixel motion estimation. The proposed method has less computational complexity than the full half pixel search method (FHSM) that needs the bilinear interpolation of half pixels and examines nine half pixel points to the find the half pixel motion vector. Experimental results show that the speedup improvement of the proposed method over FHSM can be up to $2.5\~80$ times faster and the image quality degradation is about to $0.07\~0.69(dB)$.

Adaptive Image Interpolation Using Pixel Embedding (화소 삽입을 이용한 적응적 영상보간)

  • Han, Kyu-Phil;Oh, Gil-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1393-1401
    • /
    • 2014
  • This paper presents an adaptive image interpolation method using a pixel-based neighbor embedding which is modified from the patch-based neighbor embedding of contemporary super resolution algorithms. Conventional interpolation methods for high resolution detect at least 16-directional edges in order to remove zig-zaging effects and selectively choose the interpolation strategy according to the direction and value of edge. Thus, they require much computation and high complexity. In order to develop a simple interpolation method preserving edge's directional shape, the proposed algorithm adopts the simplest Haar wavelet and suggests a new pixel-based embedding scheme. First, the low-quality image but high resolution, magnified into 1 octave above, is acquired using an adaptive 8-directional interpolation based on the high frequency coefficients of the wavelet transform. Thereafter, the pixel embedding process updates a high resolution pixel of the magnified image with the weighted sum of the best matched pixel value, which is searched at its low resolution image. As the results, the proposed scheme is simple and removes zig-zaging effects without any additional process.

Block-Based Low-Power CMOS Image Sensor with a Simple Pixel Structure

  • Kim, Ju-Yeong;Kim, Jeongyeob;Bae, Myunghan;Jo, Sung-Hyun;Lee, Minho;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • In this paper, we propose a block-based low-power complementary metal oxide semiconductor (CMOS) image sensor (CIS) with a simple pixel structure for power efficiency. This method, which uses an additional computation circuit, makes it possible to reduce the power consumption of the pixel array. In addition, the computation circuit for a block-based CIS is very flexible for various types of pixel structures. The proposed CIS was designed and fabricated using a standard CMOS 0.18 ${\mu}m$ process, and the performance of the fabricated chip was evaluated. From a resultant image, the proposed block-based CIS can calculate a differing contrast in the block and control the operating voltage of the unit blocks. Finally, we confirmed that the power consumption in the proposed CIS with a simple pixel structure can be reduced.

A Design of a Tile-Based Rasterizer Using Varying Interpolator by Pixel Block Unit (Pixel Block 단위 Varying Interpolator를 적용한 타일기반 Rasterizer 설계)

  • Kim, Chi-Yong
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.403-408
    • /
    • 2014
  • In this paper, we propose a rasterizer architecture using varying interpolator which process several pixels at a time. Proposed rasterizer is able to handle 16 pixel at a time and output the color of up to 64. It can reduce the redundancy of calculation by configuring a matrix transformation and matrix calculation for rasterization, and it can enhance the speed of rasterizer by increasing the reusability. As a result, proposed rasterizer has improve 11% in color interpolation, 17% in the processing speed of the rasterizer by comparing with conventional research.

Reducing Decoding Complexity by Improving Motion Field Using Bicubic and Lanczos Interpolation Techniques in Wyner-Ziv Video Coding

  • Widyantara, I Made O.;Wirawan, Wirawan;Hendrantoro, Gamantyo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2351-2369
    • /
    • 2012
  • This paper describes interpolation method of motion field in the Wyner-Ziv video coding (WZVC) based on Expectation-Maximization (EM) algorithm. In the EM algorithm, the estimated motion field distribution is calculated on a block-by-block basis. Each pixel in the block shares similar probability distribution, producing an undesired blocking artefact on the pixel-based motion field. The proposed interpolation techniques are Bicubic and Lanczos which successively use 16 and 32 neighborhood probability distributions of block-based motion field for one pixel in k-by-k block on pixel-based motion field. EM-based WZVC codec updates the estimated probability distribution on block-based motion field, and interpolates it to pixel resolution. This is required to generate higher-quality soft side information (SI) such that the decoding algorithm is able to make syndrome estimation more quickly. Our experiments showed that the proposed interpolation methods have the capability to reduce EM-based WZVC decoding complexity with small increment of bit rate.