• Title/Summary/Keyword: Pixel value

Search Result 706, Processing Time 0.026 seconds

Usability Evaluation of Applied Low-dose CT When Examining Urinary Calculus Using Computed Tomography (컴퓨터 단층촬영을 이용한 요로결석 검사에서 저선량 CT의 적용에 대한 유용성 평가)

  • Kim, Hyeon-Jin;Ji, Tae-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.81-85
    • /
    • 2017
  • The aim of this study was to evaluate the usability of applied Low dose Computed Tomography(LDCT) protocol in examining urinary calculus using computed tomography. The subjects of this study were urological patients who visited a medical institution located in Busan from June to December 2016 and the protocol used in this study was Adaptive Statistical Iterative Reconstruction: low-dose CT with 50% Adaptive Statistical Iterative Reconstruction (ASIR). As results of quantitative analysis, the mean pixel value and standard deviation within kidney region of image(ROI)of the axial image were $26.21{\pm}7.08$ in abdomen CT pre scan and $20.03{\pm}8.16$ in low-dose CT. Also the mean pixel value and standard deviation within kidney ROI of the coronal image were $22.07{\pm}7.35$ in abdomen CT pre scan and $21.67{\pm}6.11$ in low dose CT. The results of qualitative analysis showed that four raters' mean values of observed kidney artifacts were $19.14{\pm}0.36$ when using abdomen CT protocol and $19.17{\pm}0.43$ in low-dose CT, and the mean value of resolution and contrast was $19.35{\pm}0.70$ when using abdomen CT protocol and $19.29{\pm}0.58$ in low-dose CT. Also the results of a exposure dose analysis showed that the mean values of CTDIvol and DLP in abdomen CT pre scan were 18.02 mGy and $887.51mGy{\cdot}cm$ respectively and the mean values of CTDIvol and DLP when using low-dose CT protocol were 7.412 mGy and $361.22mGy{\cdot}cm$ respectively. The resulting dose reduction rate was 58.82% and 59.29%, respectively.

Verify Image-Guided Shifts for 6DoF Couch using Yonsei Cancer Center QA Set (Yonsei Cancer Center QA Set을 이용한 6DoF Couch의 이동 정확성 검증)

  • Jung, Dongmin;Park, Hyokuk;Yoon, Jongwon;Lee, Sangkyu;Kim, Jooho;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.7-18
    • /
    • 2017
  • Purpose: A QA Set was established to verify the movement accuracy of image-guided 6DoF Couch and to evaluate its usefulness. Materials and Methods: Two sets of linear accelerators equipped with 6DoF Couch and CBCT were used. Using the established QA Set, each CBCT image was obtained over 15 times through the Penta-Guide Phantom installed with off-set shift values along six translational (Translation; TX, TY, TZ) and rotational (Rotation, Pitch; RX, Roll; RY, Yaw; RZ) directions. Using this method, we compared the reference image and the registration image, and we analyzed the error calculated by measuring the positional accuracy of the modified 6DoF Couch. Results: The Air Cavity corresponding to the Pixel of the reference image and the registration image were all contained between 30 and 66, and the revealing high registration accuracy. Error between the modified off-set value of 6DoF Couch and the measured value along translational directions were $0.25{\pm}0.18mm$ in the TX direction, $0.25{\pm}0.25mm$ in the TY direction, and $0.36{\pm}0.2mm$ in the TZ direction. Misalignments along the rotational axis were $0.18{\pm}0.08^{\circ}$ in the RX direction, $0.26{\pm}0.09^{\circ}$ in the RY direction, and $0.11{\pm}0.08^{\circ}$ in the RZ direction, it was corrected precisely for any value. Conclusion: Using the YCC QA Set, we were able to verify the error of 6DoF Couch along both the translational and rotational directions in a very simple method. This system would be useful in performing Daily IGRT QA of 6DoF Couch.

  • PDF

Usefulness of Dual Energy CT to Improve Image Quality Degradation due to Lens Shielding (수정체 차페로 기인한 화질저하 개선을 위한 듀얼 에너지 CT의 유용성)

  • Yoon, Joon;Kim, Hyeonju
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.969-977
    • /
    • 2019
  • Applying the bismuth shield used to reduce the radiation exposure, image quality may be reduced due to beam hardening caused by the shield during CT scan. Therefore, we tried to find out the energy range that can reduce image degradation by applying GSI mode of G company's dual energy CT and examine the possibility through experiment. As a result, after bismuth shielding, 118 ± 10.6 HU and 50.1 ± 14.6 HU at 50 keV after dual-energy CT scan were the most similar to the CT value before image deterioration(p> 0.05). It was measured 176.6 ± 7.1 and 138.3 ± 1.1 at 50 keV(p> 0.05). Experiments showed that the use of the shield during CT inspection inevitably degrades the image quality, but experiments show that the GSI function of the dual energy CT can maintain the image quality even when the shield is used. If the various shields are secured after the evaluation using the dual energy CT, it is expected to overcome the disadvantages of poor image quality caused by the use of the radiation shield for reducing the exposure, which is the biggest disadvantage of the CT scan.

Development of Image Quality Enhancement of a Digital Camera with the Application of Exposure To The Right Exposure Method (ETTR 노출 방법을 활용한 디지털 카메라의 화질 향상)

  • Park, Hyung-Ju;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.95-103
    • /
    • 2010
  • Raw files record luminance values corresponds to each pixel of a digital camera sensor. In digital imaging, controlling exposure to capture the first highlight stop is important on linear-distribution of raw file characteristic. This study sought to verify the efficiency of ETTR method and found the optimum over-exposure amount to maintain the first highlight stop to be the largest number of levels. This was achieved by over-exposing a scene with a raw file and converting it to under-exposure in a raw file converting software. Our paper verified the efficiency of ETTR by controlling the exposure range and ISOs. Throughout the results, if exposure increases gradually 6 steps, dynamic range is also increased. And it shows that the optimized exposure value is around + $1\frac{2}{3}$ stop over compared to the normal exposure with the high ISOs simultaneously. We compared visual noise value at $1\frac{2}{3}$ stop to the normal exposure visual noise. Based on the normal exposure's visual noise, we can confirm that visual noise decrement is increased by increasing ISOs. In this experimental result, we confirm that overexposure about + $1\frac{2}{3}$ stop is the optimum value to make the widest dynamic range and lower visual noise in high ISOs. Based on the study results, we can provide the effective ETTR information to consumers and manufacturers. This method will contribute to the optimum image performance in maximizing dynamic range and minimizing noise in a digital imaging.

A COMPARISON OF PERIAPICAL RADIOGRAPHS AND THEIR DIGITAL IMAGES FOR THE DETECTION OF SIMULATED INTERPROXIMAL CARIOUS LESIONS (모의 인접면 치아우식병소의 진단을 위한 구내 표준방사선사진과 그 디지털 영상의 비교)

  • Kim Hyun;Chung Hyun-Dae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.2
    • /
    • pp.279-290
    • /
    • 1994
  • The purpose of this study was to compare the diagnostic accuracy of periapical radiographs and their digitized images for the detection of simulated interproximal carious lesions. A total of 240 interproximal surfaces was used in this study. The case sample was composed of 80 anterior teeth, 80 bicuspids and 80 molars which were prepared in order to distribute the surfaces from carious free to those containing simulated carious lesions of varying depths (0.5㎜, 0.8㎜, and 1.2㎜). The periapical radiographs were taken by paralleling technique and film used was Kodak Ektaspeed(E group). All radiographs were evaluated by five dentist to recognize the true status of simulated carious lesion. They were asked to give a score of 0, 1, 2, or 3. Digitized images were obtained using a commercial video processor(FOTOVIX Ⅱ- XS). And the computer system was 486 DX PC with PC Vision and frame grabber. The 17' display monitor had a resolution of 1280×1024 pixels(0.26㎜ dot pitch). But the one frame of the intraoral radiograph has a resolution of 700×480 pixels and each pixel has a grey level value of 256. All the radiographs and digital images were viewed under uniform subdued lighting in the same reading room. After a week the second interpretation was performed in the same condition. The detection of lesions on the monitor was compared with the finding of simulated interproximal carious lesions on the film images. The results were as follows: 1. When the scoring criteria was dichotomous ; lesion present and not present 1) The overall sensitivity, specificity and diagnostic accuracy of periapical radiographs and their digital images showed no statistically significant difference. 2) The sensitivity and specificity according to the region of teeth and the grade of lesions showed no statistically significant difference between periapical radiographs and their digital images. 2. When estimate the grade of lesions ; score 0, 1, 2, 3 1) The overall diagnostic accuracy was 53.3% on the intraoral films and 52.9% on digital images. There was no significant difference. 2) The diagnostic accuracy according to the region of teeth showed no statistically significant difference between periapical radiographs and their digital images. 3. The degree of agreement and reliability 1) Using gamma value to show the degree of agreement, there was similarity between periapical films and digital images. 2) The reliability of each twice interpretation of periapical films and digital images showed no statistically significant difference. In all cases P value was greater than 0.05, showing that both techniques can be used to detect the incipient and moderate interproximal carious lesions with similar accuracy.

  • PDF

Study on Performance Evaluation of Dental X-ray Equipment (치과 방사선 발생기의 성능평가에 관한 연구)

  • Jung, Jae-Eun;Jung, Jae-Ho;Kang, Hee-Doo;Lee, Jong-Woong;Ra, Keuk-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2009
  • I think this will be valuable reference for assuring consistency and homogeneity of clarity and managing dental radiation equipment by experimentation of dental radiation equipment permanent which based on KS C IEC 61223-3-4 standard and KS C IEC 61223-2-7. Put a dental radiation generator and experiment equipment as source and film(sensor) length within 30 em, place the step-wedge above the film(sensor). Tie up tube voltage 60 kVp, tube current 7 mA and then get an each image through CCD sensor and film by changing the exposure time as 0.12sec, 0.25sec, 0.4sec. Repeat the test 5times as a same method. Measure the concentration of each stage of film image, which gained by experiment, using photometer. And the image that gained by CCD sensor, analyze the pixel value's change by using image J, which is analyzing image program provided by NIH(National Institutes of Health). In case of film, while 0.12sec and 0.25sec show regular rising pattern of density gap as exposure time's increase, 0.4sec shows low rather than 0.12sec and 0.25sec. In case of CCD sensor density test, the result shows opposite pattern of film. This makes me think that pixels of CCD's sensor can have 0~255 value but it becomes saturation if the value is over 255. The way that getting clear reception during decreasing human's exposed radiation is one of maintaining an equipment as a best condition. So we should keeping a dental radiation equipment's condition steadily through cyclic permanent test after factor examination. Even digital equipment doesn't maintain a permanent, it can maintain a clarity by post processing of image so that hard to set it as standard of permanent test. Therefore it would be more increase the accuracy that compare a film as standard image. Thus I consider it will be an important measurement to care for dental radiation equipment and warrant homogeneity, consistency of dental image's clarity through comparing pattern which is the result from factor test against cyclic permanent test.

  • PDF

Moving Object Contour Detection Using Spatio-Temporal Edge with a Fixed Camera (고정 카메라에서의 시공간적 경계 정보를 이용한 이동 객체 윤곽선 검출 방법)

  • Kwak, Jae-Ho;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.474-486
    • /
    • 2010
  • In this paper, we propose a new method for detection moving object contour using spatial and temporal edge. In general, contour pixels of the moving object are likely present around pixels with high gradient value along the time axis and the spatial axis. Therefore, we can detect the contour of the moving objects by finding pixels which have high gradient value in the time axis and spatial axis. In this paper, we introduce a new computation method, termed as temporal edge, to compute an gradient value along the time axis for any pixel on an image. The temporal edge can be computed using two input gray images at time t and t-2 using the Sobel operator. Temporal edge is utilized to detect a candidate region of the moving object contour and then the detected candidate region is used to extract spatial edge information. The final contour of the moving object is detected using the combination of these two edge information, which are temporal edge and spatial edge, and then the post processing such as a morphological operation and a background edge removing procedure are applied to remove noise regions. The complexity of the proposed method is very low because it dose not use any background scene and high complex operation, therefore it can be applied to real-time applications. Experimental results show that the proposed method outperforms the conventional contour extraction methods in term of processing effort and a ghost effect which is occurred in the case of entropy method.

Post-processing Method of Point Cloud Extracted Based on Image Matching for Unmanned Aerial Vehicle Image (무인항공기 영상을 위한 영상 매칭 기반 생성 포인트 클라우드의 후처리 방안 연구)

  • Rhee, Sooahm;Kim, Han-gyeol;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1025-1034
    • /
    • 2022
  • In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

Design Anamorphic Lens Thermal Optical System that Focal Length Ratio is 3:1 (초점거리 비가 3:1인 아나모픽 렌즈 열상 광학계 설계)

  • Kim, Se-Jin;Ko, Jung-Hui;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • Purpose: To design applied anamorphic lens that focal length ratio is 3:1 optical system to improve detecting distance. Methods: We defined a boundary condition as $50^{\circ}{\sim}60^{\circ}$ for viewing angle, horizontal direction 36mm, vertical direction 12 mm for focal length, f-number 4, $15{\mu}m{\times}15{\mu}m$ for pixel size and limit resolution 25% in 33l p/mm. Si, ZnS and ZnSe as a materials were used and 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$ as a wavelength were set. optical performance with detection distance, narcissus and athermalization in designed camera were analyzed. Results: F-number 4, y direction 12 mm and x direction 36 mm for focal length of the thermal optical system were satisfied. Total length of the system was 76 mm so that an overall volume of the system was reduced. Astigmatism and spherical aberration was within ${\pm}$0.10 which was less than 2 pixel size. Distortion was within 10% so there was no matter to use as a thermal optical camera. MTF performance for the system was over 25% from 33l p/mm to full field so it was satisfied with the boundary condition. Designed optical system was able to detect up to 2.9 km and reduce a diffused image by decreasing a narcissus value from all surfaces except the 4th surface. From sensitivity analysis, MTF resolution was increased on changing temperature with the 5th lens which was assumed as compensation. Conclusions: Designed optical system which used anamorphic lens was satisfied with boundary condition. an increasing resolution with temperature, longer detecting distance and decreasing of narcissus were verified.

Evaluation on the Usefulness of Filter in Sentinel Lymphoscintigraphy Using $^{99m}Tc$-Phytate (Phytate를 이용한 감시림프절 검사 시 Filter의 유용성 평가)

  • Jeong, Yeong-Hwan;Seo, Han-Kyung;Shim, Cheol-Min;Lim, Seong-Dong;Han, Dong-Hyeon;Park, Yung-Sun;Kim, Dong-Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2010
  • Purpose: The aim of this study was to investigate distribution of particle size in phytate kit and compare filtered method with non-filtered method using 200 nm filter for sentinel lymphoscintigraphy (SLS). Materials and Methods: Five phytate kit of having the same available period was measured by particle size analyzer. For in-vivo experiment, $^{99m}Tc$-phytate was injected intradermally at both foot to perform lymphoscintigraphy. Imaging was acquired at 1hour after injection. Region of interest (ROI) was drawn in inguinal and background area for analysis. RAW 264.7 cells (Murine macrophage cell) were prepared for measurement of celluar uptake as a representative of macrophages. Paired t-test was performed using SPSS (SPSS Inc, USA) for statistical analysis. Results: The size of most particle in Techne phytate kit was distributed in 130~650 nm(90.5 %). In-vivo study, the ROI analysis showed similar result between filtered and non-filtered sample, and the numerical value of count/pixel were $58.3{\pm}5.97$ and $60.2{\pm}4.88$. In-vitro study, cellular uptake study also showed no difference between filtered and non-filtered sample by gamma counting. Conclusion: The present study demonstrates that there was no meaning of 200 nm filtered method for SLS using $^{99m}Tc$-phytate.

  • PDF