• Title/Summary/Keyword: Pixel texture analysis parameters

Search Result 9, Processing Time 0.024 seconds

Image Analysis of Diffuse Liver Disease using Computer-Adided Diagnosis in the Liver US Image (간 초음파영상에서 컴퓨터보조진단을 이용한 미만성 간질환의 영상분석)

  • Lee, Jinsoo;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2015
  • In this paper, we studied possibility about application for CAD on diffuse liver disease through pixel texture analysis parameters(average gray level, skewness, entropy) which based statistical property brightness histogram and image analysis using brightness difference liver and kidney parenchyma. The experiment was set by ROI ($50{\times}50$ pixels) on liver ultrasound images.(non specific, fatty liver, liver cirrhosis) then, evaluated disease recognition rates using 4 types pixel texture analysis parameters and brightness gap liver and kidney parenchyma. As a results, disease recognition rates which contained average brightness, skewness, uniformity, entropy was scored 100%~96%, they were high. In brightness gap between liver and kidney parenchyma, non specific was $-1.129{\pm}12.410$ fatty liver was $33.182{\pm}11.826$, these were shown significantly difference, but liver cirrhosis was $-1.668{\pm}10.081$, that was somewhat small difference with non specific case. Consequently, pixel texture analysis parameter which scored high disease recognition rates and CAD which used brightness difference of parenchyma are very useful for detecting diffuse liver disease as well as these are possible to use clinical technique and minimize reading miss. Also, it helps to suggest correct diagnose and treatment.

Texture Analysis According to Machined Surfaced and Image Magnification (가고면 거칠기와 영상배율에 따른 텍스쳐 해석)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.513-518
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason. so many studies were carried out through various attempts that were contact or non-contact using computer vision. Even though these efforts, there were few good results in this research. However, texture analysis is making a important role to solve these problems in various fields including universe, aviatiion, living thing and fibers. In this study, texture parameter was obtained by means of position operator according to variation of angle direction and distance. As a result, it was found that surface texture was more effected by direction then distance

  • PDF

Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis (GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용)

  • Lee Kiwon;Jeon So-Hee;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.121-133
    • /
    • 2005
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of the useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program based on GLCM algorithm is newly implemented. As well, texture imaging modules for GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV Texture imaging parameters, it composed of six types of second order texture functions such as Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality in GLCM/GLDV, two direction modes such as Omni-mode and Circular mode newly implemented in this program are provided with basic eight-direction mode. Omni-mode is to compute all direction to avoid directionality complexity in the practical level, and circular direction is to compute texture parameters by circular direction surrounding a target pixel in a kernel. At the second phase of this study, some case studies with artificial image and actual satellite imagery are carried out to analyze texture images in different parameters and modes by correlation matrix analysis. It is concluded that selection of texture parameters and modes is the critical issues in an application based on texture image fusion.

The Classification of Roughness fir Machined Surface Image using Neural Network (신경회로망을 이용한 가공면 영상의 거칠기 분류)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason so many studies were car-ried out through various attempts that were contact or non-contact using computer vision. Even through these efforts there were few good results in this research., however texture analysis making a important role to solve these problems in various fields including universe aviation living thing and fibers. In this study feature value of co-occurrence matrix was calculated by statistic method and roughness value of worked surface was classified, of it. Experiment was carried out using input vector of neural network with characteristic value of texture calculated from worked surface image. It's found that recognition rate of 74% was obtained when adapting texture features. In order to enhance recogni-tion rate combination type in characteristics value of texture was changed into input vector. As a result high recognition rate of 92.6% was obtained through these processes.

  • PDF

Hepatocellular Carcinoma: Texture Analysis of Preoperative Computed Tomography Images Can Provide Markers of Tumor Grade and Disease-Free Survival

  • Jiseon Oh;Jeong Min Lee;Junghoan Park;Ijin Joo;Jeong Hee Yoon;Dong Ho Lee;Balaji Ganeshan;Joon Koo Han
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.569-579
    • /
    • 2019
  • Objective: To investigate the usefulness of computed tomography (CT) texture analysis (CTTA) in estimating histologic tumor grade and in predicting disease-free survival (DFS) after surgical resection in patients with hepatocellular carcinoma (HCC). Materials and Methods: Eighty-one patients with a single HCC who had undergone quadriphasic liver CT followed by surgical resection were enrolled. Texture analysis of tumors on preoperative CT images was performed using commercially available software. The mean, mean of positive pixels (MPP), entropy, kurtosis, skewness, and standard deviation (SD) of the pixel distribution histogram were derived with and without filtration. The texture features were then compared between groups classified according to histologic grade. Kaplan-Meier and Cox proportional hazards analyses were performed to determine the relationship between texture features and DFS. Results: SD and MPP quantified from fine to coarse textures on arterial-phase CT images showed significant positive associations with the histologic grade of HCC (p < 0.05). Kaplan-Meier analysis identified most CT texture features across the different filters from fine to coarse texture scales as significant univariate markers of DFS. Cox proportional hazards analysis identified skewness on arterial-phase images (fine texture scale, spatial scaling factor [SSF] 2.0, p < 0.001; medium texture scale, SSF 3.0, p < 0.001), tumor size (p = 0.001), microscopic vascular invasion (p = 0.034), rim arterial enhancement (p = 0.024), and peritumoral parenchymal enhancement (p = 0.010) as independent predictors of DFS. Conclusion: CTTA was demonstrated to provide texture features significantly correlated with higher tumor grade as well as predictive markers of DFS after surgical resection of HCCs in addition to other valuable imaging and clinico-pathologic parameters.

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

SAR Despeckling with Boundary Correction

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.270-273
    • /
    • 2007
  • In this paper, a SAR-despeck1ing approach of adaptive iteration based a Bayesian model using the lognormal distribution for image intensity and a Gibbs random field (GRF) for image texture is proposed for noise removal of the images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. The iterative approach based on MRF is very effective for the inner areas of regions in the observed scene, but may result in yielding false reconstruction around the boundaries due to using wrong information of adjacent regions with different characteristics. The proposed method suggests an adaptive approach using variable parameters depending on the location of reconstructed area, that is, how near to the boundary. The proximity of boundary is estimated by the statistics based on edge value, standard deviation, entropy, and the 4th moment of intensity distribution.

  • PDF

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

Application of Computer-Aided Diagnosis a using Texture Feature Analysis Algorithm in Breast US images (유방 초음파영상에서 질감특성분석 알고리즘을 이용한 컴퓨터보조진단의 적용)

  • Lee, Jin-Soo;Kim, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.507-515
    • /
    • 2015
  • This paper suggests 6 cases of TFA parameters algorithm(Mean, VA, RS, SKEW, UN, EN) to search for the detection of recognition rates regarding breast disease using CAD on ultrasound images. Of the patients who visited a university hospital in Busan city from August 2013 to January 2014, 90 cases of breast ultrasound images based on the findings in breast US and pathology were selected. $50{\times}50$ pixel size ROI was selected from the breast US images. After pre-processing histogram equalization of the acquired test images(negative, benign, malignancy), we calculated results of TFA algorithm using MATLAB. As a result, in the TFA parameters suggested, the disease recognition rates for negative and malignancy was as high as 100%, and negative and benign was approximately 83~96% for the Mean, SKEW, UN, and EN. Therefore, there is the possibility of auto diagnosis as a pre-processing step for a screening test on breast disease. A additional study of the suggested algorithm and the responsibility and reproducibility for various clinical cases will determine the practical CAD and it might be possible to apply this technique to range of ultrasound images.