• Title/Summary/Keyword: Pixel array

Search Result 262, Processing Time 0.028 seconds

Fabrication of New Co-Silicided Si Field Emitter Array with Long Term Stability (Co-실리사이드를 이용한 새로운 고내구성 실리콘 전계방출소자의 제작)

  • Chang, Gee-Keun;Kim, Min-Young;Jeong, Jin-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.301-304
    • /
    • 2000
  • A new triode type Co-silicided Si FEA(field emitter array) was realized by Co-silicidation of Co coated Si FEA and its field emission properties were investigated. The field emission properties of the fabricated device through the unit pixel with $45{\times}45$ tip array in the area of $250{\mu\textrm{m}}{\times}250{\mu\textrm{m}}$ under high vacuum condition of $10^{-8}Torr$ were as follows : the turn-on voltage was about 35V and the anode current was about $1.2\mu\textrm{A}(0.6㎁/tip)$ at the bias of $V_A=500V\;and\; V_G=55V$. The fabricated device showed the stable electrical characteristics without degradation of field emission current for the long term operation except for the initial transient state. The low turn-on voltage and the high current stability of the Co-silicided Si FEA were due to the thermal and chemical stability and the low work function of silicide layer formed at the surface of Si tip.

  • PDF

A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation (방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석)

  • Kim, Giyoon;Kim, Myungsoo;Lim, Kyungtaek;Lee, Eunjung;Kim, Chankyu;Park, Jonghwan;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

Parallel Processing Method for Generating Elemental Images from Hexagonal Lens Array (육각형 렌즈 어레이로부터 요소영상을 생성하기 위한 병렬 처리 기법)

  • Kim, Do-Hyeong;Park, Chan;Jung, Ji-Sung;Kwon, Ki-Chul;Kim, Nam;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • According that most integral imaging techniques have used rectangular lens array, this integrated distribution of light is recorded in the form of a rectangular grid. However, hexagonal lens array gives a more accurate approximation of ideal circular lens and provides higher pickup/display density than rectangular lens array[4]. Using the parallel processing technique in order to generate the elemental imaging for hexagonal lens array, each pixel that compose the elemental imaging should be determined to belong to the hexagonal lens. This process is output to the screen for every pixel in progress, and many computations are required. In this paper, we have proposed parallel processing method using an OpenCL to generate the elemental imaging for hexagonal lens array in 3D volume date. In the experimental result of proposed method show speed of 20~60 fps for hexagonal lens array of $20{\times}20$ sizes and input data of Male[$128{\times}256{\times}256$] volume data.

Fabrication of Pixel Array using Pentacene TFT and Organic LED (펜타센 TFT와 유기 LED로 구성된 픽셀 어레이 제작)

  • Choe Ki Beom;Ryu Gi Seong;Jung Hyun;Song Chung Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.13-18
    • /
    • 2005
  • In this paper, we fabricated a pixel array in which each pixel was consisted of Organic Thin Film Transistor (OTFT) serially connected with Organic Light Emitting Diode (OLED) on Poly-ethylene-terephthalate (PET) substrate and the number of pixels was 64 x 64. As a gate insulator of OTFT, the thermally cross-linked PVP was used and the organic semiconductor, Pentacene, is deposited for an active layer of OTFT considering the compatibility with PET substrate. The mobility of OTFT is $1.0\;cm^2/V{\cdot}sec$ as a discrete device, but it was reduced to $0.1\~0.2\;cm^2/V{\codt}sec$ in the array. We analyzed the operation of the array and confirmed the current driving ability of OTFTs for the OLEDs.

Fabrication of New Silicided Si Field Emitter Array with Long Term Stability (실리사이드를 이용한 새로운 고내구성 실리콘 전계방출소자의 제작)

  • Chang, Gee-Keun;Yoon, Jin-Mo;Jeong, Jin-Cheol;Kim, Min-Young
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.124-127
    • /
    • 2000
  • A new triode type Ti-silicided Si FEA(field emitter array) was realized by Ti-silicidation of Ti coated Si FEA and its field emission properties were investigated. In the fabricated device, the field emission properties through the unit pixel with $200{\mu\textrm{m}}{\times}200{$\mu\textrm{m}}$ tip array in the area of $1000{\mu\textrm{m}}{\times}1000{$\mu\textrm{m}}$ were as follows : the turn-on voltage was about 70V under high vacuum condition of $10^8Torr$, and the field emission current and steady state current degradation were about 2nA/tip and 0.3%/min under the bias of $V_A=500V\;and\;V_G=150V$. The low turn-on voltage and the high current stability during long term operation of the Ti silicided Si FEA were due to the thermal and chemical stability and the low work function of silicide layer formed at the surface of Si tip.

  • PDF

A Low Dark Current CMOS Image Sensor Pixel with a Photodiode Structure Enclosed by P-well

  • Han, Sang-Wook;Kim, Seong-Jin;Yoon, Eui-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.102-106
    • /
    • 2005
  • A low dark current CMOS image sensor (CIS) pixel without any process modification is developed. Dark current is mainly generated at the interface region of shallow trench isolation (STI) structure. Proposed pixel reduces the dark current effectively by separating the STI region from the photodiode junction using simple layout modification. Test sensor array that has both proposed and conventional pixels is fabricated using 0.18 m CMOS process and the characteristics of the sensor are measured. The result shows that the dark current of the proposed pixel is 0.93fA/pixel that is two times lower than the conventional design.

Optimization of Light Guide Thickness for Optimal Flood Image Acquisition of a 14 × 14 Scintillation Pixel Array (14 × 14 섬광 픽셀 배열의 최적의 평면 영상 획득을 위한 광가이드 두께 최적화)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.365-371
    • /
    • 2022
  • In order to obtain excellent spatial resolution in the PET detector, when the detector module is designed using very small scintillation pixels, overlap occurs at the edges and corners of the scintillation pixel array in the flood image. By using a light guide, the occurrence of overlap can be reduced. In this study, after using a scintillator of 0.8 mm × 0.8 mm × 20 mm to form a 14 × 14 array, 3 mm × 3 mm SiPM pixels are combined with 4 × 4 photosensor to reduce the occurrence of overlap. The optimal thickness of the light guide used for this purpose was derived. Quantitative evaluation was performed based on scintillation pixel images of edges and corners where overlap occurs mainly in the acquired flood image. Quantitative evaluation was calculated through the interval and full width at half maximum between scintillation pixel images, and when a light guide with a thickness of 2 mm was used, the best image was obtained with a k value of 2.60. In addition, as a result of measuring the energy resolution through the energy spectrum, the light guide with a thickness of 2 mm showed the best result at 28.5%. If a 2 mm light guide is used, it is considered that the best flood image and energy resolution with minimal overlap can be obtained.

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF