• 제목/요약/키워드: Pitting Corrosion

검색결과 351건 처리시간 0.03초

해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성 (Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

수퍼 이상 스테인리스강의 내식성에 미치는 입열의 영향 (The Effect of Heat Input on the Pitting Corrosion Resistance of the Weld of Super Duplex Stainless Steel)

  • 성희준;주정권;이철환;김대순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.134-135
    • /
    • 2004
  • 해양구조물의 설치 환경 및 제품의 사용환경이 악화됨에 따라서 높은 내식성을 보이는 수퍼 이상 스테인리스강(이하: SDSS)의 사용이 많아지고 있다. 해양 구조물에 사용되는 SDSS는 대부분이 파이프자재로서 내부에서의 접근이 불가능하여 용접은 GTAW로 초층을 용접하여 이면 비드를 형성시키는 One side 용접법이 채택되고 있다. (중략)

  • PDF

예민화 처리된 316L 스테인레스 강의 염소이온함유 용액에서 마모전극 실험과 교류 임피던스 측정법을 통한 공식에 대한 연구 (A Study on the Pitting Corrosion of Sensitized 316L Stainless Steel in Cl ̄-Ion Containing Solution by Using Abrading Electrode Technique and Ac-Impedance Spectroscopy)

  • 박진주;변수일;이우진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1997년도 한국재료학회 춘계학술발표회
    • /
    • pp.92-92
    • /
    • 1997
  • PDF

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

Ti-6Al-4V재의 전기화학적부식 거동에 미치는 시효열처리의 영향 (The Effect of Age Heat-treatment to the Electro-Chemical Corrosion Behavior on Ti-6Al-4V)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.70-77
    • /
    • 2000
  • In this paper, the effect of solution and age heat treatment to the corrosion behavior for the Ti-6Al-4V alloy were studied by cyclic polarization methods. Ti-6Al-4V was solution heat treated at $1,066^{\circ}C$ and $966^{\circ}C$ for 5 hours, and followed by age heat treated at $650^{\circ}C$, $600^{\circ}C$ and $550^{\circ}C$ with 1, 2, 4, 8 and 16 hours under vacuum environment. Test solution was 3.5% NaCl with temperature $25^{\circ}C$. The obtained results were as follows: 1. Base metal was exhibited higher electrical charge than that of solution and aged material. With decrease of solution-treatment temperature from 1066 to $966^{\circ}C$, the electrical charge was increased due to softening of micro structure. 2. The corrosion resistance of specimen that solution treated at $966^{\circ}C$ for 5 hours and age heat treated at 650, 660 and $550^{\circ}C$ were increased with increase of aging time to 4, 8 and 16 hours respectively, and then decreased. 3. In case of 316L stainless steel, measured charge and corrosion potential was 0.0627 coulomb and -614 mV respectively. Corrosion resistance of Ti-6Al-4V was higher than that of 316L.

  • PDF

An Electrochemical Method to Predict Corrosion Rates in Soils

  • Dafter, M.R
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.217-225
    • /
    • 2016
  • Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provideauseful predictive tool in determiningthe current and future conditions of an asset. Anumber of LPR tests have been developed on soil by various researchers over the years1), but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

가스 질화를 통한 316L스테인리스강의 내식성 개선 (Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding)

  • 조현빈;박세림;김지수;이정훈
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2024
  • 오스테나이트계 스테인리스강은 내식성 및 성형성이 양호하여 다양한 분야에 적용되며, 구리계의 합금을 용가재로 하는 브레이징을 통하여 다양한 형상의 제품으로 가공되어 활용되고 있다. 이때, 구리 기반의 용가재와 스테인리스강의 계면에서 갈바닉 셀을 형성하여 부식을 촉진할 수 있으며, 확산을 통해 스테인리스강에 고용 시 형성되는 구리 과다 영역(Cu-rich region)은 공식 발생의 기점이 되어 내식성을 저하시킨다. 본 연구에서는 브레이징이 적용된 스테인리스강의 내식성을 개선하고자, AISI 316L 스테인리스강에 암모니아 가스를 이용한 질화처리를 적용하였다. 질화처리한 시편은 처리 온도가 증가함에 따라 두께가 증가하고 표면 경도가 높아졌다. 동전위분극시험을 통해 내식성을 평가한 결과 질화층 내 고용된 질소의 용출 및 부동태 거동으로 모재대비 내식성이 개선되었지만 처리온도가 높아 크롬질화물(CrN) 분율이 증가하는 경우 내식성이 감소하였다.

염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구 (A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment)

  • 하종문;심덕남;김승현
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

선박용 calorifier의 고장모드에 대한 근본원인분석 (Root Cause Analysis on Failure Mode of Calorifier for Vessel)

  • 이덕보;김정현;강수근;강영복;김형삼
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권1호
    • /
    • pp.93-103
    • /
    • 2006
  • Basic function of calorifier system is to supply warm water to the vessel. The heater used in the calorifier system plays a very important role in its reliability. The failure mechanism of heater are compared with accelerated life test. The main cause of failed heater is pitting corrosion occurred between the surface of heater and spacer. To prevent the corrosion failure from heater, material of spacer replaces metal(SUS 304) with polymer (Acryl). The life of redesigned heater can guarantee 2.47years of B10 life under the worst condition.

  • PDF