• Title/Summary/Keyword: Pitch control

Search Result 795, Processing Time 0.03 seconds

Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method (개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현)

  • Jeong, In-Oh;Lee, Yun-Han;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

A Method to Define Steady-State Curves for Variable-Speed Variable-Pitch Wind Turbine (가변속도-가변피치 풍력터빈의 정상상태 곡선 결정 방법)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.894-899
    • /
    • 2009
  • Aerodynamic power and torque of wind turbine are highly nonlinear and its operation mode depends on control strategies. Therefore, it is essential to define steady-state curves for the purpose of control and operation of wind turbine system. The steady-state curves of wind turbine can be defined by determining its operating points. In this paper, an algorithm to determine operating points of variable-speed variable-pitch wind turbine is presented on the basis of pitch-to-feather control strategy. And this algorithm is applied to obtain steady-state curves for an 1.5MW wind turbine.

A Study on the Wind Turbine Blade Optimization and Pitch Control Using the Hybrid Genetic Algorithm (혼합형 유전 알고리즘을 이용한 풍력발전기용 블레이드 최적설계 및 피치제어에 관한 연구)

  • Kang, Shin-Jae;Kim, Ki-Wan;Ryu, Ki-Wahn;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.7-13
    • /
    • 2002
  • This paper introduced a new hybrid genetic algorithm, verified its performance, and applied it to the optimization of blade design and pitch control for 30kW pitch-controlled variable-speed horizontal-axis wind turbine system to determine the optimum blade chord and twist distributions that maximize the energy production for a given Weibull wind distribution and the optimum blade pitch angles that maintain constant power output.

Flight Test of Pitch Control Force for an Airplane (항공기 피치 조종력 비행시험)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.20-26
    • /
    • 2014
  • This paper presents the procedures and the results of the pitch control force via flight test for a light airplane in order to make out the stability of the aircraft and the compliance with concerned regulation. The flight test procedures were determined in order to obtain the aircraft type certification. The instrumentation equipments including airspeed indicator, accelerometer, and pitch control force measurement tools are used to perform the flight test. For the flight test, the airspeed and the pitch control force with related normal acceleration are measured sustaining turn flight with bank angle derived from trim speed. The flight test results showed that the handling qualities of the airplane are complied with the KAS-23, the regulation of the Korean government for the light airplane type certification.

Power Regulation of Variable Speed Wind Turbines using Pitch Control based on Disturbance Observer

  • Joo, Young-Jun;Back, Ju-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.273-280
    • /
    • 2012
  • Most variable speed wind turbines have pitch control mechanisms and one of their objectives is to protect turbines when the wind speed is too high. By adjusting pitch angles of wind turbine, the inlet power and the torque developed by the turbine are regulated. In this paper, the difference between the real wind speed and its rated value is regarded as a disturbance, and a component called disturbance observer (DOB) is added to the pre-designed control loop. The additional DOB based controller estimates the disturbance and generates a compensating signal to suppress the effect of disturbance on the system. As a result, the stability and the performance of the closed loop system guaranteed by an outer-loop controller (designed for a nominal system without taking into account of disturbances) are approximately recovered in the steady state. Simulation results are presented to verify the performance of the proposed control scheme.

A Study on Pitch Period Detection Algorithm Based on Rotation Transform of AMDF and Threshold

  • Seo, Hyun-Soo;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.178-183
    • /
    • 2006
  • As a lot of researches on the speech signal processing are performed due to the recent rapid development of the information-communication technology. the pitch period is used as an important element to various speech signal application fields such as the speech recognition. speaker identification. speech analysis. or speech synthesis. A variety of algorithms for the time and the frequency domains related with such pitch period detection have been suggested. One of the pitch detection algorithms for the time domain. AMDF (average magnitude difference function) uses distance between two valley points as the calculated pitch period. However, it has a problem that the algorithm becomes complex in selecting the valley points for the pitch period detection. Therefore, in this paper we proposed the modified AMDF(M-AMDF) algorithm which recognizes the entire minimum valley points as the pitch period of the speech signal by using the rotation transform of AMDF. In addition, a threshold is set to the beginning portion of speech so that it can be used as the selection criteria for the pitch period. Moreover the proposed algorithm is compared with the conventional ones by means of the simulation, and presents better properties than others.

  • PDF

Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control (퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어)

  • Lee, Jae-Oh;Han, Seong-Ik;Han, In-Woo;Lee, Seok-In;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

Pitch Period Detection Algorithm Using Rotation Transform of AMDF (AMDF의 회전변환을 이용한 피치 주기 검출 알고리즘)

  • Seo, Hyun-Soo;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1019-1022
    • /
    • 2005
  • As recent information communication technology is rapidly developed, a lot of researches related to speech signal processing have been processed. So pitch period is applied as important factor to many application fields such as speech recognition, speaker identification, speech analysis and synthesis. Therefore, many algorithms related to pitch detection have been proposed in time domain and frequency domain and AMDF(average magnitude difference function) which is one of pitch detection algorithms in time domain chooses time interval from valley to valley as pitch period. But, in selection of valley point to detect pitch period, complexity of the algorithm is increased. So in this paper we proposed pitch detection algorithm using rotation transform of AMDF, that taking the global minimum valley point as pitch period and established a threshold about the phoneme in beginning portion, to exclude pitch period selection. and compared existing methods with proposed method through simulation.

  • PDF

Fault Tolerant Control of Wind Turbine with Sensor and Actuator Faults

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.28-37
    • /
    • 2013
  • This paper presents a fault-tolerant control technique for wind turbine systems with sensor and actuator faults. The control objective is to maximize power production and minimize turbine loads by calculating a desired pitch angle within their limits. Any fault with a sensor and actuator can cause significant error in the pitch position of the corresponding blade. This problem may result in insufficient torque such that the power reference cannot be achieved. In this paper, a fault-tolerant control technique using a robust dynamic inversion observer and control allocation is employed to achieve successful pitch control despite these faults in the sensor and actuator. The observer based detection method is used to detect and isolate sensor faults by checking whether errors are larger than threshold values. In addition, the control allocation technique is adopted to tolerate actuator fault. Control allocation is one of the most commonly used fault-tolerant control techniques, especially for over-actuated systems. Further, the control allocation method can be used to achieve the power reference even in the event of blade actuator fault by redistributing the lost torque due to erroneous pitch position into non-faulty blade actuators. The effectiveness of the proposed method is demonstrated through simulations with a benchmark model of the wind turbine.

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.