• Title/Summary/Keyword: Pitch angle

Search Result 698, Processing Time 0.025 seconds

Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades (산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구)

  • Koo, Jae-In;Kim, Chang-Soo;Chung, Jin-Teak;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF

Design of Low Noise Axial Flow Fan Using Specific Sound Presssure Level (비소음 측정을 이용한 저소음 축류홴 설계)

  • 김창준;이동익
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.873-879
    • /
    • 2000
  • Experimental investigation was conducted to study the effects of pitch angle maximum camber on the performance and noise of an axial-flow fan used in outdoor-unit of air -conditioner. For this study the axial-flow fan whose pitch angle can be varied was made and the Specific sound Pressure Level and other coefficients were measured using the anechoic fan tester. It is found that pitch angle affects more severly than the maximum camber on the fan performance. On the while the maximum camber affects much on the specific sound power level. Present results show that it is important to choose the optimum pitch angle and maximum camber to design the high-performance and low-noise axial-flow fan and specific noise measured in the anechoic fan tester can be sued effectively for the design of low-noise fan.

  • PDF

Influence of pitch on over-current characteristics of HTS tapes (고온초전도 선재의 과전류 통전 특성에 대한 피치의 영향)

  • 임성우;황시돌;최효상;김헤림;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.507-510
    • /
    • 2002
  • In economical points of view, AC loss of high temperature superconducting devices is considered as a serious problem that must be solved. Expecially, in case of HTS cables, HTS tapes are wound helically on the former to reduce AC loss. Critical characteristics of HTS tapes, however, are influenced by mechanical stress as well as electrical, temperature, and magnetical factors. The purpose of this study is to investigate the over current characteristics of HTS tapes given mechanical stress when they are wound on the former. We prepared HTS tapes with the pitch angle 20$^{\circ}$, length 25cm as well as tapes with pitch angle 0$^{\circ}$. When current of over 200A$\_$rms/ was applied, we found out that there are differences to the rate of resistance increase between the case of pitch angle 20$^{\circ}$and that of 0$^{\circ}$. The rate of resistance variation in HTS tapes of pitch angle 20$^{\circ}$increased more slowly than that of pitch angle 0$^{\circ}$. As a result, we concluded that if critical characteristics of HTS tapes are degraded by any external factor, when over current is applied, the current limiting characteristics in HTS tapes won't be able to be expected any more.

  • PDF

Effect of pitch angle and blade length on an axial flow fan performance (피치각과 날개 길이 변화에 따른 축류팬의 성능 및 소음 특성에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3170-3176
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance and sound characteristics. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed 80 mm, 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment.

An Experiment Study on Sideslip Angle Effect of Lambda Wing Configuration (람다 날개 형상의 옆미끄럼각 효과에 대한 실험적 연구)

  • Shim, HoJoon;Park, Seung-O;Oh, Se-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.224-231
    • /
    • 2015
  • An experimental study on aerodynamic coefficients of a lambda wing configuration was performed at the low speed wind tunnel of Agency for Defense Development. The main purpose of this study was to investigate the effects of sideslip angle on various aerodynamic coefficients. In the case of $0^{\circ}C$ sideslip angle, nose-up pitching moment rapidly increases at a specific angle of attack. This unstable pitching moment characteristic is referred to as pitch break or pitch up. As the sideslip angle increases, the pitch break is found to be generated at a higher angle of attack. Rolling moment is found to show similar behavior pattern to 'pitch break' style with angle of attack at non-zero sideslip angles. This trend gets severer at greater sideslip angles. Yawing moment also shows substantial variation of the slope and the unstable directional stability with sideslip angles at higher angles of attack. These characteristics of the three moments clearly implies the difficulty of the flight control which requires efficient control augmentation system.

A Study on the fan efficiency decrease on the backward flow in an axial fan (송풍-역풍 겸용 축류팬 피치각에서 역풍시 효율저하 원인에 관한 연구)

  • Kim, Hwa-Young;Hur, Jin-Huek;Moon, Seung-Jae;Lee, Jae-Heon;Yoo, Ho-Seon;Im, Yun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.386-391
    • /
    • 2009
  • In this study, the numerical study has carried out to analyze the factors of the efficiency decrease at backward flow situation in an axial fan with adjustable blades. The analysis is carried out the pitch angle $36^{\circ}$ on the forward flow and the pitch angle $-26^{\circ}$ on the backward flow. The numerical results show that the air flow rates of the pitch angle $36^{\circ}$ and $-26^{\circ}$ are respectively calculated to 285 CMM and 212 CMM. The results are similar to the experimental results carried out by Chang, and have made the maximum error of 10.6% when compared with the experimental results. The important reason of the fan efficiency decrease is that axial fan used for this study was designed to use for the forward flow. As the results, the pitch angle $-26^{\circ}$ has occurred the recirculation around the impeller blade, impeller cover and stator.

  • PDF

Adaptive Control of Pitch Angle of Wind Turbine using a Novel Strategy for Management of Mechanical Energy Generated by Turbine in Different Wind Velocities

  • Hayatdavudi, Mahdi;Saeedimoghadam, Mojtaba;Nabavi, Seyed M.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.863-871
    • /
    • 2013
  • Control of pitch angle of turbine blades is among the controlling methods in the wind turbines; this measure is taken for managing mechanical power generated by wind turbine in different wind velocities. Taking into account the high significance of the power generated by wind turbine and due to the fact that better performance of pitch angle is followed by better quality of turbine-generated power, it is therefore crucially important to optimize the performance of this controller. In the current paper, a PI controller is primarily used to control the pitch angle, and then another controller is designed and replaces PI controller through applying a new strategy i.e. alternating two ADALINE neural networks. According to simulation results, performance of controlling system improves in terms of response speed, response ripple, and ultimately, steady tracing error. The highly significant feature of the proposed intelligent controller is the considerable stability against variations of wind velocity and system parameters.

Development of Horizontal Attitude Monitoring System for Agricultural Robots (농업 로봇 용 수평 자세 모니터링 시스템 개발)

  • Kim, Sung Deuk;Kim, Cheong Worl;Kwon, Ik Hyun;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • In this paper, we have development of horizontal attitude monitoring system for agricultural robots. A two-axis gyro sensor and a two-axis accelerometer sensor are used to measure the horizontal attitude angle. The roll angle and pitch angle were measured through the fusion of the gyro sensor signal and the acceleration sensor signal for the horizontal attitude monitoring of the robot. This attitude monitoring system includes GPS and Bluetooth communication module for remote monitoring. The roll angle and pitch angle can be measured by the error of less than 1 degree and the linearity and the reproducibility of the output signal are excellent.

A Research of Attitude Angle Control Structure for Thrust Vector Control of Missiles at Initial Boosting Phase (초기 추력편향제어를 위한 자세각제어 구조에 대한 연구)

  • Kim, Boo-Min;Whang, Ick-ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1523-1531
    • /
    • 2017
  • In general, the thrust vector control should be fast and stable in the initial launch phase. Two types of conventional controllers, one is for pitch angle control and the other is for pitch rate control, are designed based on the equation of motion without aerodynamics and are compared in the viewpoints of the stability margin and the time response performance. Also analyzed are the rejection capabilities to cope with high aerodynamic disturbances caused by high angle of attacks in initial booting phase. Additionally, time response features at actuator saturation are investigated. Based on those results, we suggest a controller structure which is more suitable for thrust vector control of missiles at initial booting phase.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.